Pulse or digital communications – Receivers – Automatic gain control
Reexamination Certificate
1999-11-05
2003-05-13
Le, Amanda T. (Department: 2634)
Pulse or digital communications
Receivers
Automatic gain control
C455S234200, C455S241100, C455S251100
Reexamination Certificate
active
06563891
ABSTRACT:
BACKGROUND
The present invention relates to communication systems and more particularly, to automatic gain control circuits used in radio communications systems.
In many radio receivers, an automatic gain control (AGC) circuit is used to control the dynamic range of a received signal. A typical AGC circuit may track changes in the received signal and set the gain of the receiver accordingly. Such an AGC circuit may be incorporated into a receiver used in, for example, a mobile station such as a cellular phone or a car-mounted mobile phone in a radio communications system such as a Code Division Multiple Access (CDMA) System.
The dynamic range in different parts of a radio receiver in a mobile station such as a hand-held terminal (“cellular phone”) or similar portable terminal may be of importance due to requirements related to power consumption. Portable terminals are typically battery powered and thus there is a ubiquitous concern for conserving power therein. It is well known in the art that by limiting the dynamic range of a received signal within the receiver, power conservation may be realized. For example, the dynamic range of a radio signal input to an A/D converter should be as limited as possible to enable the use of low resolution, low power A/D converters in the receiver. Furthermore, power consumption in analog amplifiers and filter sections is directly proportional to the dynamic range of the input signal. Hence, there is a universal need for efficient AGC circuits to limit the dynamic range of an input signal both in the analog and digital circuit domains.
A digital AGC circuit typically tracks changes in the received signal in order to optimize the use of available dynamic range. Signal power is generally favored as a control parameter since it most directly impacts power use within the receiver. In a typical receiver, changes in received signal power may be due to fast fading, shadowing (e.g., blocking of a signal by a building, and similar external interference anomalies), or the received signal power may change due to internal system power control events and due to the impact of internal interference sources. Moreover changes in received signal power may be due to frequency channel switching associated with various configurations of cellular topology.
Cellular radio communications systems often use hierarchical cell configurations to achieve advantages by allocating cell layout and frequency reuse based on user type. Such a Hierarchical Cell Structure is further described in U.S. Patent Application entitled “Tailored HCS”, Ser. No. 08/872,065, filed Jun. 10, 1997 and incorporated herein by reference now U.S. Pat. No. 6,094,581. Since mobile users fall into different use categories such as fast moving and slow moving (e.g., automobile based mobile users and walking mobile users), different cell configurations may use different operational parameters such as frequency allocation within the different categories of cells which best accommodate slow moving and fast moving users. Generally, in a hierarchical cellular system cells for slow moving users may be a subset of larger cells designated for fast moving users and may be denoted as, for example, a “pico cell”, as is further described in U.S. Patent application entitled “Self Tuning Signal Strength Threshold”, Ser. No. 09/179,958, filed Oct. 28, 1998 incorporated herein by reference. However, since it is plausible that a fast moving user will become a slow moving user and vice versa, and to facilitate cell to cell handoffs during the normal course of operation, it is often necessary for mobile stations to monitor the same and/or other frequency channels in anticipation of cell changeovers or handoffs. And some systems exist in the prior art to adjust the AGC gain values when performing such monitoring in anticipation of handoff. One such system Is disclosed in U.S. Pat. No. 5,524,009 to Tuutijarvi et al. on Jun. 4, 1996. Tuutijarvi et al. disclose fast AGC setting using a received signal strength (RSS) measurement procedure. In Tuutijarvi et al. when a handoff command is sent by a base station to a mobile station, “free” slots are used to measure signal strength to set an AGC in advance of switching channels in the mobile station. While such a system may improve handoff time, it does not actually change the time constant for the AGC circuit and may become overloaded in a receiver which is constantly monitoring other radio channels.
In a CDMA system, a received signal may consist of a desired signal and interference. Typically, interference dominates in a received signal, particularly when considering the use of wide spreading methods. Thus, an AGC circuit will track not only signal power but the power of the interference as well. In a CDMA system, a mobile station may be expected to perform measurements on multiple frequency channels in order to prepare for inter-frequency hand-over. At different frequency channels, received signal power may differ significantly due to different interference levels, different load, and possibly, different radio network topologies. A mobile station may further be expected to perform measurements on frequency channels associated with other radio communication systems in order to perform inter-system hand-overs. Regardless of the motivation for measurements, they should be performed as fast as possible so as, for example, not to disturb voice quality associated with an ongoing call, or not to risk losing the call connection entirely.
Situations may further arise in which a CDMA system deliberately changes the interference level and/or the desired signal level. For example, in some radio communication systems, a mobile station may switch to receive other signals for positioning purposes. Positioning may be accomplished in a mobile station by measuring signals at different frequencies from multiple base stations at a receiver within the mobile station. The measured signals together with known positions associated with the base stations from which the signals were received, are used to calculate the position of the receiver using known methods such as triangulation. During such measurements, it may be advantageous to reduce the power of interfering signals originating from the same base station as the desired signal or from adjacent base stations. Measurements may be performed repetitively and the mobile station may require several measurements to calculate and/or update its position, particularly when moving, thus leading to rapid switching between normal reception and position oriented measurement modes, hand-off modes, and the like. Identifying unsynchronized sources may further require a receiver to switch between different received signals as further described in related U.S. application Ser. No. 09/093,315, supra, incorporated herein by reference.
Problems arise however in a receiver when starting up an AGC circuit on a new frequency particularly when changing frequency channels abruptly. Because a typical AGC circuit contains a control loop and relies on filtering successive signal samples, it may takes a certain time period for the AGC circuit to settle. This may be referred to as the AGC “settling time”. It is desirable to minimize the AGC settling time so as to minimize the time during which the AGC-controlled signal level is not in the target range. If multiple changeovers, or frequency switches are occurring often or continuously, the AGC settling time may occupy a large percentage of the total switching time and become a significant impediment to maintaining signal quality and conserving power.
Therefore, it would be appreciated in the art to have an AGC circuit which measured and adjusted receiver gain as quickly as possible with minimum settling time. Such a circuit would allow power to be reduced while improving quality measures on an active call connection.
SUMMARY
It is therefore an object of the present invention to provide a receiver having an improved digital AGC circuit which minimizes the time during which an AGC-controlled signal level is out of the target ra
Dent Paul Wilkinson
Eriksson Håkan Bengt
Gustafsson Kjell Berthold
Burns Doane , Swecker, Mathis LLP
Le Amanda T.
Telefonaktiebolaget L M Ericsson (publ)
LandOfFree
Automatic gain control for slotted mode operation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automatic gain control for slotted mode operation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatic gain control for slotted mode operation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3090576