Automatic gain control circuit with high linearity and...

Amplifiers – Signal feedback – Amplifier in signal feedback path

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C330S134000, C330S254000, C330S284000

Reexamination Certificate

active

06538507

ABSTRACT:

FIELD OAF THE INVENTION
The present invention relates to an automatic gain control (ACG) circuit, and more particularly to an AGC circuit with high linearity and monotonically correlated offset voltage.
DESCRIPTION OF RELATED ART
Automatic Gain Control (AGC) circuits are used in many communication and signal processing applications. For example, in the receiver of a wired or wireless communication link, the intended signal to be processed may be a short distance away and therefore relatively strong while another signal may be a long distance away and much weaker. The receiver must process both the strong signals and the weak signals which implies a variable gain function. High gain is used to detect and amplify weak signals and low gain and/or attenuation is used to process strong signals.
In certain architectures, such as a zero intermediate frequency (ZIF) radio architecture and the like, the AGC function requires a relatively large maximum voltage gain and wide total gain range capability. Further, the gain range must be relatively matched across two baseband channels (I and Q). In order to facilitate a fast response control loop which sets the AGC, it is desired that the AGC have very good absolute gain control across process variations and temperature. The AGC should have excellent low noise and linearity performance, and work with a limited voltage supply. Additional requirements may be necessary, such as relatively high symmetry and well controlled overdrive characteristics and low overall power dissipation.
Ideal amplifiers have no input offset voltage but the inevitable mismatch between components during manufacturing results in a finite value. Input offset voltage is the apparent DC input voltage when zero input voltage is applied. That is, with zero applied input voltage, the output voltage is nonzero. The input offset voltage is equal to this output voltage divided by the amplifier voltage gain. In a ZIF radio architecture, the input offset voltage needs to be corrected before low level signals can be detected or accurately decoded. The offset correction must occur very quickly, but is complicated by the fact that the input offset voltage changes as the amplifier gain is changed. So if the input offset voltage can not be eliminated altogether, then the next best case is to have its dependency upon gain be predictable so the correction process can be as quick as possible.
The most simple gain stage that can implement an AGC function is the basic differential pair of transistors. An exemplary differential pair stage includes a pair of bipolar transistors Q
1
, Q
2
having their emitters coupled together and to a bias current sink. A pair of load or bias resistors is each coupled between a respective collector of the differential pair and a voltage supply signal. A differential input is applied across the bases of the transistors, and a differential output is developed across the respective collectors. The gain of this stage is the transconductance of either transistor Q
1
or Q
2
multiplied by the load resistance. By simply varying the transconductance, the gain is changed. The transconductance can be varied by changing the bias current. A fundamental problem with this type of AGC circuit is that it has limited input signal swing capability. Input differential voltages of approximately 50 millivolts (mV) peak to peak begin to cause significant nonlinearities, which are unacceptable in many applications. Such nonlinearities, for example, may result in a total harmonic distortion (THD) that is greater than 1%. In high performance systems, AGC functions may need to handle input differential voltages as large as two (2) volts (V) peak to peak, making this AGC stage unacceptable.
The next most common gain stage used for AGC functions is the differential pair with emitter degeneration. The gain stage with emitter degeneration is similar to the simple gain stage just described and further includes a pair of emitter degeneration resistors to increase the input signal swing capability. In particular, the emitters of the differential pair of transistors Q
1
, Q
2
are not connected to each other. Instead, each emitter is coupled to one end of a respective one of the emitter degeneration resistors. The other ends of the resistors are coupled together and to the bias current sink. The emitter degeneration resistors are ideally linear. The overall transconductance of this stage is decreased by the emitter resistors and their presence allows for more of the input signal to appear across these resistors than across the nonlinear base-emitter junctions of the transistors Q
1
or Q
2
. This results in significantly improved linear handling of large input differential voltages. As the emitter resistors are increased, however, the overall transconductance of the stage becomes less and less dependent on the transistor's transconductance and more dependent on the emitter resistors. A fundamental problem with this arrangement is that the ability to vary the gain by changing the bias current is severely limited as the emitter resistors are increased.
More advanced AGC circuits have been suggested. One idea is to provide an analog attenuator in front of a fixed gain operational amplifier (op-amp). There are several problems with this arrangement for certain applications. First, the analog attenuator circuit requires a stack (cascode) of at least three transistors and resistors, which reduce voltage swing capability. Next, placing an attenuator in front of a large fixed gain amplifier forces the resistors that make up part of the attenuator circuitry to be very low-valued in order to meet reasonable noise performance. These low valued resistors require significant supply current.
None of the solutions described above meet all of the desired characteristics of an AGC circuit for use in a ZIF architecture.
SUMMARY OF THE PRESENT INVENTION
An automatic gain control (AGC) circuit according to an embodiment of the present invention includes a high gain amplifier, a feedback network and first and second transconductance amplifiers. The high gain amplifier has an output that asserts an output signal of the AGC circuit. The feedback network has a first end that receives an input signal of the AGC circuit, a second end coupled to the output of the high gain amplifier and first and second intermediate nodes. Each transconductance amplifier has an input coupled to a respective one of the first and second intermediate nodes of the feedback network and an output coupled to the input of the high gain amplifier. The transconductance amplifiers collectively control a position of a virtual ground within the feedback network to control gain of the AGC circuit. The transconductance amplifiers each include an attenuator coupled to the feedback network, and a transconductance stage coupled to the attenuator and to the input of the high gain amplifier.
Each transconductance amplifier is configured to operate linearly across a relatively wide input voltage range. The AGC circuit is preferably configured so that its input offset voltage varies monotonically with gain of the AGC circuit. Although it may be desired not to have any input offset voltage, a predictable offset voltage is easily compensated and reduced or eliminated.
In one embodiment, the high gain amplifier is a differential amplifier that has a differential input and a differential output with first and second polarity outputs. The feedback network includes first and second intermediate differential nodes. Each transconductance amplifier has a differential input coupled to a respective one of the first and second intermediate differential nodes of the feedback network and a differential output coupled to the differential input of the differential amplifier. The feedback network may be implemented in any of several manners. In an illustrated configuration, the feedback network includes first and second sets of resistors, where each resistor set is coupled in series between a respective polarity of the input signal and a corresponding output polar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automatic gain control circuit with high linearity and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automatic gain control circuit with high linearity and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatic gain control circuit with high linearity and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3077913

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.