Automatic configuration options for multi-element robotic...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Robot control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S215000, C700S260000, C701S023000, C701S050000, C369S036010, C369S178010, C360S092100, C901S001000, C901S006000

Reexamination Certificate

active

06314338

ABSTRACT:

TECHNICAL FIELD
The present invention is related to the field of automatic configuration detection and methods of operation for robotic data library systems
BACKGROUND ART
Very large robotic library systems are formed by linking two or more stand-alone libraries together. Each stand-alone library consists of a library storage module having hundreds to thousands of cells for storing data cartridges, one or more read/write cartridge drives, one or more robotic arms for moving the data cartridges between the cells and read/write cartridge drives, and one or more library controllers. Inter-library data cartridge transfers are accomplished by a device called a pass through port. Each pass through port has the ability to move one or more data cartridges at a time between the two library that it couples together. Coordination of data cartridge movement through a pass through port is usually accomplished in a master/slave relationship. One library controls the pass through port as a master, the other library operates as a slave.
In very large robotic library systems, each library is often coupled to several of its neighbor libraries by the pass through ports. This is done to provide multiple paths entering and exiting each library. This also results in multiple paths between any two given libraries in the robotic library system. Should one path fail or become busy with other tasks, a data cartridge can be transferred between libraries by an alternative path.
Coordination of inter-library data cartridge transfers is accomplished by one or more library management units. Each library management unit is aware of the configuration of the robotic library system, and has the ability to communicate with all, or at least some of the libraries. The library management unit is thus given the responsibility of instructing individual libraries when and where to move a given data cartridge in order to move that data cartridge from a source library to a destination library.
Problems can arise when the library management units have the wrong information about the configuration of the robotic library system. Incorrect information is currently introduced at installation and expansion times. Installers manually enter configuration data into the library management unit since the hardware lacks a capability for self-discovery. Existing installations have included as many as sixteen libraries interconnected by up to twenty-nine pass through ports. Manual configuration entry becomes even more prone to manually induced error when the robotic library system has multiple library management units. The installers must enter the exact same information into all of the library management units to insure proper operations.
Another source of manually induced error comes from the clients who use the very large robotic library systems. Client generated code that is dependent upon the robotic library system configuration must have the exact same information that the installer entered into the library management units. Any mismatch between the client generated code and the library management unit concerning the configuration can result in unwanted and unexpected operations.
DISCLOSURE OF INVENTION
The present invention is a robotic library system, and methods of operation for automatic configuration discovery and subsequent movements of data cartridges within the system. The robotic library system has multiple libraries connected by one or more pass through ports. Each library is capable of storing a plurality of data cartridges. Each pass through port is capable of moving one or more data cartridges at a time between the two libraries that it connects together. Unique identifiers are associated with each library and are adapted to be readable by identifier readers disposed in adjoining libraries coupled by the pass through ports.
The identifiers may be in the form of memory devices, optical patterns, or the like. Memory device type identifiers may be disposed within the associated library and transferred to the adjoining libraries through communications channels. The communications channels may be functionally and/or physically routed through the pass through ports. Alternatively, the memory device type identifiers may be disposed within the adjoining library by the installer at installation time. Likewise, optical pattern based identifiers of one library may be mounted in the adjoining libraries, preferably near the appropriate pass through port.
In operation, the identifier readers of one library read the identifiers of each adjoining library connected by a pass through port. This information is then combined in a library management unit to produce an inter-library connectivity model for the robotic library system. The library management unit may use this model to select an appropriate path through one or more pass through ports and libraries to move a data cartridge from a sending library to a destination library.
Knowledge of the identity of interconnected libraries allows interlibrary paths to be determined by the libraries themselves, instead of by the library management unit. The sending library may query its adjoining libraries through the communication channels in search of the destination library. If the source and destination libraries are not directly connected by a pass through port, then those libraries adjoining the source library query their adjoining libraries, and so on, until the destination library is queried. The destination library responds to each query received with an answer. News of all paths found is relayed back to the source library where one path is selected. Finally, the data cartridge is sent on its way to the destination library through the selected path.
In another method of operation, the source library queries its adjoining libraries seeking the destination library. If the destination library is not directly connected to the source library, then the source library may move a data storage cartridge to one of its adjoining libraries along with the destination library's identity. The libraries receiving the data cartridge will then repeat the process, moving the data cartridge to other adjoining libraries, until the data cartridge reaches the destination library.
Intelligence in the pass through port allows data cartridge movements between connected libraries to take place with the libraries acting as peers to each other. Here, the source library will request a pass through port to position itself to receive a data cartridge with the source library. Once the pass through port indicates that it is positioned, the source library moves the data cartridge into the pass through port. After the source library has informed the pass through port that it is finished loading the data cartridge, the pass through port repositions the data cartridge to give it to the destination library. When ready to unload the data cartridge, the pass through port notifies the destination library that the data cartridge is available. The destination library then unloads the data cartridge from the pass through port.
Accordingly, it is an object of the present invention to provide a robotic library system having multiple libraries wherein each library has a unique identifier and an identifier reader mechanism capable of reading the identifiers associated with adjoining libraries connected through a pass through port. The identifiers and identifier readers provide the robotic library system with a configuration self-discovery capability.
Another object of the present invention is a method of operating a robotic library system where the individual libraries use the self-discovered configuration information and inter-library communications to move data cartridges between libraries.
These and other objects, features and advantages will be readily apparent upon consideration of the following detailed description in conjunction with the accompanying drawings.


REFERENCES:
patent: 5506986 (1996-04-01), Healy
patent: 5546366 (1996-08-01), Dang
patent: 6175466 (2001-01-01), Hori et al.
Beccari et al., A real-time libra

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automatic configuration options for multi-element robotic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automatic configuration options for multi-element robotic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatic configuration options for multi-element robotic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2596275

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.