Power plants – Combustion products used as motive fluid – Process
Reexamination Certificate
2002-07-16
2004-06-01
Casaregola, Louis J. (Department: 3746)
Power plants
Combustion products used as motive fluid
Process
C060S039281, C060S725000
Reexamination Certificate
active
06742341
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to the field of gas turbine engines, and more particularly to a system and method for controlling the combustion process of a gas turbine engine.
BACKGROUND OF THE INVENTION
Gas (combustion) turbine engines are used for generating power in a variety of applications including land-based electrical power generating plants. Gas turbines may be designed to combust a broad range of hydrocarbon fuels, such as natural gas, kerosene, biomass gas, etc. Gas turbines are known to produce an exhaust stream containing a number of combustion products. Many of these byproducts of the combustion process are considered atmospheric pollutants, and increasingly stringent regulations have been imposed on the operation of gas turbine power plants in an effort to minimize the production of these gasses. Of particular concern is the regulation of the production of the various forms of nitrogen oxides collectively known as NO
x
. It is known that NO
x
emissions from a gas turbine increase significantly as the combustion temperature rises. One method of limiting the production of nitrogen oxides is the use of a lean mixture of fuel and combustion air, i.e. a relatively low fuel-to-air ratio, thereby limiting the peak combustion temperature to a degree that reduces the production of NO
x
.
Another critical concern for the operation of a gas turbine engine is the control of the combustion dynamics. The fuel and air mixture is ignited and burned in the combustor section of a gas turbine engine under extremely high pressure and temperature conditions. Dynamic pressure waves having a frequency ranging from a few hundred hertz to a few thousand hertz occur during the combustion process. If these pressure pulses become excessive, mechanical damage can result in the turbine combustor and downstream components. Increasing the flame temperature can stabilize the combustion process. This approach, however, will exacerbate the problem of controlling NO
x
production. Accordingly, there must be a balance between the concerns of reduced emissions and stable combustion.
U.S. Pat. No. 5,544,478 describes a system for optical sensing of combustion dynamics in a gas turbine engine. The fuel/air mixture of the gas turbine is automatically controlled by an emission control circuit that adjusts the position of valves controlling the flow of fuel to the combustor. A combustion dynamics analyzer receives the output of an ultraviolet radiation detector and includes a Fast Fourier Transform for determining the magnitudes of various spectral acoustic frequency components of the detector signal. Combustion dynamics parameters as determined by this spectrum analysis are then applied to a turbine control element to maintain the combustion process within acceptable dynamics and emissions limits.
U.S. Pat. No. 5,706,643 describes a method of minimizing nitrous oxide emissions in a gas turbine engine including the steps of monitoring pressure fluctuations within the engine and increasing the fuel flow to the combustor if the pressure fluctuations exceed a pre-established threshold. Once the pressure fluctuations are brought back under control, the fuel flow to the combustor is readjusted to a lean-burn condition to minimize the emissions.
Two-stage combustors are used on some gas turbine engine designs. Such combustors include a pilot burner for providing a diffusion flame and a secondary burner (sometime referred to as the C stage) for producing a pre-mix flame. The pilot flame generally has a higher fuel-to-air ratio and is used at low power levels and during power transient conditions in order to provide improved stability for the flame front. The premix flame is generally leaner and is used at high power levels to provide the desired low level of emissions.
Traditionally, gas turbine engine settings for a land-based powder generation turbine are manually “tuned” by a combustion engineer during the start-up of the power plant in order to satisfy appropriate emissions criteria without exceeding dynamic load limitations. As emission limits become increasingly stringent, low NO
x
combustors must be operated increasingly close to their physical limits and operational margins become smaller. A power plant turbine may be required to operate for days, weeks or even months. During such extended intervals, many variables affecting the combustion conditions may change. For example, the temperature and humidity of the ambient combustion air may change, the fuel characteristics may change, and the combustion system components are subject to wear and drift over time. In addition, short-term fluctuations may also occur in the combustion process. These may be caused either by an actual physical change or may be simply created by an instrumentation anomaly.
SUMMARY OF THE INVENTION
Thus, it is desired to have a gas turbine control system and a method of operating a gas turbine engine that will ensure continuous compliance with permitted emission levels while minimizing the risk of damage to combustion system components.
A method of controlling a gas turbine engine is described herein as including: automatically analyzing transients in a dynamic parameter of a gas turbine engine in a first frequency range and in a second frequency range that extends higher than the first frequency range; and automatically taking a first corrective action in the event of an unacceptable parameter transient in the first frequency range and automatically taking a second corrective action different than the first corrective action in the event of an unacceptable parameter transient in the second frequency range. The actions may include: increasing a pilot fuel fraction in the gas turbine engine in the event of unacceptable pressure pulsations in the first frequency range; and reducing a power level of the gas turbine engine in the event of unacceptable pressure pulsations in the second frequency range. The method may include: using average pressure data to identify unacceptable pressure transients in the first frequency range; and using instantaneous pressure data to identify unacceptable pressure transients in the second frequency range.
A method of controlling a gas turbine is described herein as including: beginning a first time period when a first dynamic parameter value in a gas turbine trips a first set point; monitoring a second dynamic parameter in the gas turbine during a second time period following the first time period; beginning a third time period when the second dynamic parameter trips a second set point; monitoring a third dynamic parameter in the gas turbine during a fourth time period following the third time period; and taking corrective action to reduce instability in the gas turbine when the third dynamic parameter trips a third set point.
A gas turbine power generation apparatus is described herein as including: a compressor for providing a flow of compressed air; a fuel supply for providing a flow of combustible fuel; a combustor for burning the fuel in the compressed air to form a flow of combustion gas; a turbine for expanding the combustion gas and for generating mechanical power; a sensor for generating a signal responsive to pressure transients in the combustion gas; a signal processor for determining the spectral components of the signal; a controller for executing logic for comparing the spectral components of a first frequency range to a first allowable value and the spectral components of a second frequency range extending higher than the first frequency range to a second allowable value to identify unacceptable pressure transients; and logic executable by the controller for implementing a first corrective action in response to an unacceptable pressure transient in the first frequency range and for implementing a second corrective action different than the first corrective action in response to an unacceptable pressure transient in the second frequency range.
REFERENCES:
patent: 3826080 (1974-07-01), DeCorso et al.
patent: 4160362 (1979-07-01), Martens et al.
patent: 4199295
Berksoy Sanem
Ryan William Richard
Casaregola Louis J.
Siemens Westinghouse Power Corporation
LandOfFree
Automatic combustion control for a gas turbine does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automatic combustion control for a gas turbine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatic combustion control for a gas turbine will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3363264