Automatic called party locator over internet

Multiplex communications – Pathfinding or routing – Switching a message which includes an address header

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06539015

ABSTRACT:

TECHNICAL FIELD
This invention relates to Internet telephony, and more specifically relates to establishing an Internet telephony connection to a called party who may be located at any one of a number of potential stations or who may be mobile.
Acronyms
The written description uses a large number of acronyms to refer to various services and system components. Although known, use of several of these acronyms is not strictly standardized in the art. For purposes of this discussion, acronyms therefore will be defined as follows:
Action Control Point (ACP)
Advanced Intelligent Network (AIN)
Advanced Services Platform (ASP)
Authentication Center (AC)
Base Station (BS)
Cellular Subscriber Station (CSS)
Common Channel Inter-office Signaling (CCIS)
Domain Name Server (DNS)
Dual Tone Multifrequency (DTMF)
Data and Reporting System (D&RS)
Equipment Identity Register (EIR)
Home Location Register (HLR)
Integrated Service Control Point (ISCP)
Intelligent Peripheral (IP)
Internet Protocol (IP)
Local Access and Transport Area (LATA)
Low-Power Self Contained Cell (LPSC)
Mobile Identification Number (MIN)
Mobility Controller (MC)
Mobile Switching Center (MSC)
Mobile Telephone Switching Office (MTSO)
Overhead Message Train (OMT)
Personal Base Station (PBS)
Personal Communication Service (PCS)
Plain Old Telephone Service (POTS)
Private Branch Exchange (PBX)
Private Automatic Branch Exchange (PABX)
Public Switched Telephone Network (PSTN)
Routing Control Record (RCR)
Service Control Point (SCP)
Service Management System (SMS)
Service Switching Point (SSP)
Signaling Transfer Point (STP)
Station Message Detail Recording (SMDR)
Service Creation Environment (SCE)
Telephone Company (TELCO)
Temporary Local Directory Number (TLDN)
Transaction Capabilities Applications Protocol (TCAP)
Transport Control Protocol (TCP)
Transport Control Protocol/Internet Protocol (TCP/IP)
Visitor Location Register (VLR)
Wireless Private Branch Exchange (WPBX)
BACKGROUND ART
Being readily available for telephone contact has become increasingly important for a growing number of people who have a significant need to be reachable regardless of their location. Many such persons have a telephone for business, a telephone for home, a mobile cellular telephone in the car, a transportable telephone for personal wear, as well as stations providing telephone service through computers. Business people and professionals at times have multiple offices and may additionally work at a home office. All of these telephones and computer stations generally have different telephone numbers and Internet addresses. This requires a caller to know or look up multiple numbers and addresses, and frequently to make multiple calls in order to reach a person.
While there are several telephone equipment features and telephone company services designed to ease the problem of multiple telephone numbers, they do not solve all such problems. For example, call forwarding provides call redirection from one telephone to another. However, once the subscriber activates call forwarding, he or she cannot answer the primary telephone until the feature is deactivated. Additionally, calls can only be forwarded to one telephone, so that the user must know where he or she is going to be in order to forward calls effectively. Without remote activation, subscribers must turn on call forwarding from their primary telephone.
A second attempt to solve this problem requires the addition of expensive customer premises equipment connected to the primary telephone and either a second telephone line or three-way calling. In this system, when a call comes in, the system sets up a three-way call to a pre-programmed telephone number, and either simultaneously alerts the attached telephone and the remote telephone or alerts the remote telephone after a predetermined number of rings. The system determines whether the attached telephone or the remote telephone answers first. If the attached telephone answers first, the system terminates the connection to the remote telephone. If the remote telephone answers first, the system bridges the incoming call to that telephone or, for three-way calling, simply drops off the connection. This system is limited in the number of other telephones that may be alerted, and involves installing and programming customer premises equipment that occupies space at or near the customer's telephone, and requires an additional line or coordination with three-way calling.
The complexity of the problem has recently increased in that a significant number of such persons now desire to be available not only via the public telephone network but also by Internet telephony through personal computer stations as well as public telephone network stations or terminals. While multicasting is known in the Internet the methodology generally relies upon routing protocols based on a distance-vector (sometimes also called path-vector routing scheme such as that used in IDRP (Inter-Domain Routing Protocol):
Routing Information Protocol (RIP), as described by C. L. Hedrik in “Routing Information Protocol”, RFC 1058 (Request for Comments), NIC (Network Information Center), June 1988.
Hello Routing Protocol, disclosed by D. L. Mills in “Experimental Multiple Path Routing Algorithm”, RFC 981, NIC, March 1986.
Border Gateway Protocol (BGP), described by K. Lougheed and Y. Rekhter in “Border Gateway Protocol (BGP)”, RFC 1163, NIC, June 1990.
Gateway-Gateway Protocol (GGP) ,as disclosed by R. M. Hinden and A. Sheltzer in “DARPA Internet Gateway”, RFC 823, NIC, September 1982,
IP multicast algorithms have been developed primarily for use with the Routing Information Protocol as disclosed by C. L. Hedrik, cited above, but are usable with the other distance-vector routing algorithms as well. IP multicast algorithms (see, e.g., S.E. Deering and D. R. Cheriton, cited above; S. E. Deering: “Host Extensions for IP Multicasting”, RFC 1112, NIC, August 1988; L. Hughes and P. Thomlinson: “A Multicast Internetwork Routing Algorithm”. Proceedings of the IFIP WG 6.4 Conference on High Speed Networking, 18-22 March 1991, Berlin, pp. 183-200; D. Waltzman, C, Partridge, and S. E. Deering: “Distance Vector Multicast Protocol”, RFC 1075, NIC, November 1988) are all variants of the Reverse Path Broadcasting algorithm described by Y. K. Dalai and R. M. Metcalfe in “Reverse Path Forwarding of Broadcast Packets”, Communications of the ACM, Vol. 21, No. 12, pp. 1040-1048, ACM, December 1978. This algorithm is similar to the LAN multicast algorithm in that a spanning tree is used to distribute the multicast packets, however, it contains additional features to solve some of the problems associated with LAN multicasting. In brief, the algorithm works as follows (see S. E. Deering and D. R. Cheriton, cited above, for a more detailed description):
1. Multicast packets are initially broadcast to all subnetworks in the internetwork. Packets are broadcast on a least-cost spanning tree. When a router receives a multicast packet from some source “S”, it knows that it is on the spanning tree for multicasts originating from S if its routing tables indicate that it can reach node S with a lower cost than all other routers attached to a given subnetwork (this information is available in the normal IP routing tables). If so, that router forwards the multicast packets on the subnetwork in question. It was shown by S. E. Deering and D. R. Cheriton, cited above, that this algorithm results in the multicast packet being distributed to each subnetwork in the internetwork with minimum cost.
An obvious improvement of this scheme compared to the LAN multicasting schemes is that while here the multicast spanning tree is fixed for a given source, it is not the same for all sources. Thus multicast traffic is distributed over many different paths in the network.
2. In order to avoid broadcasting multicast packets to subnetworks that do not have members in the specified group, a scheme is used whereby routers that receive a multicast for a particular group that do not lie on a branch of the multicast tree that leads to any member

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automatic called party locator over internet does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automatic called party locator over internet, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatic called party locator over internet will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3072455

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.