Automatic acoustic management system for a disc drive

Dynamic magnetic information storage or retrieval – Automatic control of a recorder mechanism – Controlling the head

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S078070

Reexamination Certificate

active

06704159

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of mass storage devices. More particularly, this invention relates to a system for implementing automatic acoustic management in disc drives.
BACKGROUND OF THE INVENTION
One key component of any computer system is a device to store data. Computer systems have many different places where data can be stored. One common place for storing massive amounts of data in a computer system is on a disc drive. The most basic parts of a disc drive are an information storage disc that is rotated, an actuator that moves a transducer head to various locations over the disc, and electrical circuitry that is used to write and read data to and from the disc. The disc drive also includes circuitry for encoding data so the data can be successfully retrieved from and written to the disc surface. A microprocessor controls most of the operations of the disc drive as well as passing the data back to the requesting computer and accepting data from a requesting computer for storing to the disc.
The transducer head is typically placed on a small ceramic block, referred to as a slider, that is aerodynamically designed to fly over the disc as the disc is rotated under the influence of a spindle motor. The slider is passed over the disc in a transducing relationship with the disc. Most sliders have an air-bearing surface (“ABS”) which includes rails and a cavity between the rails. When the disc rotates, air is dragged between the rails and the disc surface causing pressure, which forces the transducer head away from the disc. At the same time, the air rushing past the cavity or depression in the ABS produces a negative pressure area. The negative pressure or suction counteracts the pressure produced at the rails. The slider is also attached to a load spring which produces a force on the slider that is directed toward the disc surface. The various forces equilibrate so that the slider flies over the surface of the disc at a particular desired fly height. The fly height is the distance between the disc surface and the transducing head, which is typically equal to the thickness of the air lubrication film. This film eliminates the friction and the resulting wear that would occur if the transducing head and the disc were to be in mechanical contact during the disc rotation. In some disc drives, the slider passes through a layer of lubricant rather than flying over the surface of the disc.
Information representative of data is stored on the surface of the storage disc. Disc drive systems read and write information stored on tracks on the storage discs. Transducers, in the form of read/write heads attached to the sliders, located on both sides of the storage disc, read and write information on the storage discs when the transducers are accurately positioned over one of the designated tracks on the surface of the storage disc. The transducer is also said to be moved to a target track. As the storage disc spins and the read/write head is accurately positioned above a target track, the read/write head can store data onto the track by writing information representative of data onto the storage disc. Similarly, reading data from a storage disc is accomplished by positioning the read/write head above a target track and reading the stored material on the storage disc. To write on or read from different tracks, the read/write head is moved radially across the tracks to a selected target track. The data is divided or grouped together on the tracks. Some disc drives have a multiplicity of concentric circular tracks. In other disc drives, a continuous spiral is one track on one side of drive. Servo feedback information is used to accurately locate the transducer head. The actuator assembly is moved to the required position and held very accurately during read or write operations using the servo information.
The actuator is rotatably attached to a shaft via a bearing cartridge which generally includes one or more sets of ball bearings. The shaft is attached to the base of the disc drive, and may also be attached to the top cover of the disc drive. A yoke is attached to the actuator. A voice coil is attached to the yoke at one end of the rotary actuator. The voice coil is part of a voice coil motor (VCM) used to rotate the actuator and the attached transducer(s). A permanent magnet is attached to the base and the cover of the disc drive. The VCM which drives the rotary actuator comprises the voice coil and the permanent magnet. The voice coil is attached to the rotary actuator and the permanent magnet is fixed on the base. The yoke is generally used to attach the permanent magnet to the base and to direct the flux of the permanent magnet. Since the voice coil sandwiched between the magnet and the yoke assembly is subjected to magnetic fields, electricity can be applied to the voice coil to drive the voice coil so as to position the transducer(s) at a target track.
Two of the ever constant goals of disc drive designers are to increase the data storage capacity of disc drives, and to decrease the amount of time needed to access the data. To increase storage capacity, current disc drives have increased numbers of tracks per inch (TPI). Put simply, current disc drives squeeze more tracks onto the same size disc. Decreasing the amount of time needed to access the data can be thought of as increasing the speed at which data is retrieved. Increasing the speed at which data is retrieved is very desirable. Any decreases in access time increase the speed at which a computer can perform operations on data. When a computer system is commanded to perform an operation on data that must be retrieved from disc, the time needed to retrieve the data from the disc is often the bottleneck in the operation. When data is accessed from a disc more quickly, more transactions can generally be handled by the computer in a particular unit of time.
A rotating disc data storage device uses a servo system to perform two basic operations: track seeking and track following. Track seeking refers to the ability of the disc drive and the servo system to move the read/write transducer head of the disc drive from an initial track to a target track from which data is to be read, or to which data is to be written. The settling of the transducer head at the target track is referred to as seek settling. Track following, which is performed after the head has been aligned with a target track, refers to the ability of the disc drive and the servo system to maintain the read/write head positioned over the target track. Note that, to effectively perform track seeking and track following in a disc drive with increased TPI, the servo open loop bandwidth of the system must also be pushed or increased.
While performance indices of disc drives, such as access times, WinBench scores, etc., are important concerns for customers of disc drives, another important concern is the acoustic level of disc drives. Normally, the acoustics of a disc drive includes two portions: an idle mode portion and a seeking mode portion. In the idle mode portion, the source of the acoustics is the spindle motor which rotates the disc. The idle mode acoustics form an acoustic baseline for the disc drive. In the seeking mode portion, the source of the acoustics is the VCM. The VCM seeking acoustics are added to the baseline. Customers generally prefer disc drives with low acoustics.
In practice, there exists a trade-off between the performance indices and the acoustic levels of a disc drive. In particular, to achieve faster disc drive performance, the acoustic levels of a disc drive will be increased (i.e., made noisier). Conversely, to achieve improved acoustic levels, disc drive performance will be sacrificed. The optimal trade-off between performance and the acoustic levels of a disc drive will be different for different customers. For example, in the consumer electronics market, some customers may be relatively sensitive to the acoustic levels of disc drives, and may prefer a quieter disc drive over a noisier disc drive even if it r

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automatic acoustic management system for a disc drive does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automatic acoustic management system for a disc drive, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatic acoustic management system for a disc drive will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3233275

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.