Automated traffic mapping using sampling and analysis

Communications: electrical – Vehicle position indication – Map display

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S989000, C340S905000, C701S117000, C701S118000, C701S119000, C701S213000, C380S271000

Reexamination Certificate

active

06333703

ABSTRACT:

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The present invention generally relates to the gathering and interpretation of information from mobile stations and, more particularly, to generating a map of traffic conditions from data collected from mobile units over a wireless link providing instant position data.
BACKGROUND DESCRIPTION
The gathering and interpretation of traffic information is a manual operation. Traffic information gathering services such as Metro Networks rely on human information sources; e.g., police and fire departments, traffic aircraft, reports phoned in by mobile units, and the like. The information is then interpreted and manually entered into a database. By the time the information gets to a user, it is often too late for the user to take advantage of the information. In many instances the information is no longer valid.
The Global Positioning System (GPS) uses a set of twenty-four orbiting satellites to allow ground-based users to determine their locations. Systems for automotive use have dropped in price to the point where they can be purchased for a few hundred to a few thousand dollars. These systems are either built in to the vehicle (e.g., the Cadillac On-Star system) or are portable in a lap top computer (e.g., the Delorme GPS Tripmate system). Such systems, however, are essentially passive, one way systems; that is, they provide the driver with position information based on GPS data. In the case of the On-Star system, there is an integrated cellular phone, but this is used only when actuated by the user or in case of an accident.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a map of traffic conditions generated by data collected from mobile units over a wireless link providing instant position data.
It is another object of the invention to provide a map of traffic conditions which contains the instantaneous velocities of the mobile data collection units.
It is a further object of the invention to provide a warning system for mobile units based upon data held in the traffic map generated in accordance with the teachings of this invention.
It is yet another object of the invention to provide warnings sent to vehicles about to enter traffic jams or used in an Intelligent Vehicle Highway System (IVHS) system for the general public.
A further object of the invention is to use sampling and analysis techniques to generate traffic maps, using position data taken at different times from mobile units which are a sample of all vehicles in traffic, providing an accuracy for said traffic maps of all vehicles in traffic which is within a range determined by the size of the sample, the accuracy of the position data and the frequency with which the position data is taken.
According to the invention, there is provided a system of mobile units installed in, for example, vehicles in traffic. These mobile units include both wireless communications devices and apparatus (e.g., a GPS system) that determines the location of each mobile unit. Monitoring a mobile unit's position as a function of time also reveals the velocity of the mobile unit. Position and speed information is periodically broadcast by the vehicles to a central monitoring or base station and to neighboring mobile units.
At the central monitoring or base station, the collective input of a set of mobile units is processed to provide an instant chart of traffic conditions in the area. A mathematical analysis of data from a sampling of mobile units may be sufficient to give an accurate estimate of traffic patterns. Warnings of delays or updates on traffic conditions on the road ahead are then automatically returned to subscribers of the information or are used as part of an Intelligent Vehicle Highway System (IVHS).
Given a capability as herein described of sampling traffic conditions at different locations and different time periods, there are several methods which can be used to select a proper sample size and/or use a given sample to make statements (within a range of accuracy determined by the sample size) about the full population. These methods include, for example:
1. Classical Statistics as, for example, in “Probability and Statistics for Engineers and Scientists” by R. E. Walpole and R. H.
Myers, Prentice-Hall 1993; Chapter 8 and Chapter 9, where estimates of the mean and variance of the population are derived.
2. Bayesian Analysis as, for example, in “Bayesian Data Analysis” by A Gelman, J. B. Carlin, H. S. Stern and D. B. Rubin, Chapman and Hall 1995; Chapter 7, where several sampling designs are discussed.
3. Artificial Intelligence techniques, or other such techniques as Expert Systems or Neural Networks as, for example, in “Expert Systems: Principles and Programming” by J. Giarratano and G. Riley, PWS Publishing 1994; Chapter 4, or “Practical Neural Networks Recipes in C++” by T. Masters, Academic Press 1993; Chapters 15,16,19 and 20, where population models are developed from acquired data samples.
Neighboring mobile units within a region communicating with one another form a network in which the broadcast information is processed locally on the respective mobile units to estimate possible problems ahead and consider computing an alternate road and/or checking with the central monitoring or base station for more information. If out of range of the central monitoring or base station, the mobile units in the network form a local area network for the exchange and update of information, and when any mobile unit in the network is within range of the central monitoring base station, the local area network data is uploaded to help update the overall traffic information.
In addition to the central monitoring or base station, a plurality of relay stations can be installed to provide better coverage for an area or region of interest. The relay stations, having more power, can better transmit and relay data to and from the central monitoring or base station which might otherwise be out of range of some vehicles in the covered region. Alternatively or in addition to, a plurality of base stations may be connected in a larger area network, and mobile units communicate with a closest base station.
The general concept of the invention may be extended to multiple mobile units where there is a need to define a routing/hopping procedure. Each mobile unit must have a unique identifier (e.g., a mobile IP address). Hopping from unit to unit is based on the range (mobile units who can hear you or not) of the units. Each mobile unit tries to reach the closest base station by checking how many hops away each reachable unit is from a base station. When a probe signal reaches a base station, the signal percolates back to the mobile units which registers how many hops away it is from the base station. Routing across reachable mobile units is prioritized based on the hopping distance. Broken hopping chains are by-passed by the first unit in the chain that detects the missing element. When reaching a base station, a mobile unit can register to that base station so that messages can now be routed (e.g., percolated back) from base station to the unit. A header designates communication from and to the base station and broadcast or one-on-one messages (to neighboring mobile units). Mixed modes exist for the traffic mapping performed partially locally and by the central monitoring or base station. Local base stations may register connected devices to a global directory of the service provider for lager scale routing.
The user set may consist of a fleet of trucks, taxicabs, government service vehicles, or the customers of a wireless service provider. The customers may subscribe to a traffic information service that provides instant traffic condition updates based upon the reports of the whole user set. Discounts may be offered to those subscribers who join the information providing user set.


REFERENCES:
patent: 4689747 (1987-08-01), Kurose et al.
patent: 5138321 (1992-08-01), Hammer
patent: 5164904 (1992-11-01), Sumner
patent: 5177685 (1993-01-01), Davis et

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automated traffic mapping using sampling and analysis does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automated traffic mapping using sampling and analysis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated traffic mapping using sampling and analysis will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2580038

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.