Material or article handling – Apparatus for moving intersupporting articles into – within,...
Reexamination Certificate
2001-02-02
2003-03-04
Matecki, Kathy (Department: 3654)
Material or article handling
Apparatus for moving intersupporting articles into, within,...
C414S788300, C414S792500, C414S792900, C414S907000, C206S304000, C206S499000
Reexamination Certificate
active
06527499
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to systems for transporting vehicle tires and, more particularly, to a system and method for automatically loading and unloading vehicle tires and compressing vehicle tires for storage and/or transportation within a tire transport frame.
BACKGROUND OF THE INVENTION
The tire distribution process currently requires transporting large quantities of tires from the plants where they are manufactured to the various facilities where tires are delivered to consumers and/or mounted on vehicles. Typically, the processes for transporting tires from these plants to wholesalers, retailers, and service centers involve the use of large vessels. For example, semi-trailers are used for transportation over the road, rail cars are used for transportation via rail, and shipping containers are used for transportation over water. Further, these vessels provide storage of tires prior to and after transport.
To minimize the costs associated with such storage and transportation, it is desirable to pack the tires into each storage and/or transportation vessel in such a manner as to maximize the density of tires within the vessel while providing satisfactory stability of the loaded tires and avoiding permanent deformation of the loaded tires. Maintenance of the tires under a compressive load has been found to improve the stability of the loaded tires. Unfortunately, though, compression can lead to permanent deformation of the tires in some stacking configurations. Thus, a variety of stacking arrangements have been tested, each with its inherent difficulties.
One stacking arrangement that has been used extensively is called the stovepipe. This stacking arrangement is characterized by several tires stacked directly atop one another, aligned along a single axis, the axis of rotation, which is oriented vertically. In this type of stacking arrangement, the outer diameter or treaded portion of the tires on the bottom of the stovepipe stack must absorb the load caused by the weight of the tires above. In general, stacking tires in the stovepipe configuration tend to cause the treads of the tires to bow outward such that the tires, once installed on a vehicle, track along their centerlines. If there is sufficient heat and/or time during transport and storage, the deformation can be permanent. This inherent tendency toward deformation of the stovepipe-stacked tires precludes the use of excessive compression to enhance the stability of a stovepipe stack of tires. Moreover, the volume of empty space along the central axis of each stack is not utilized.
A more desirable stacking configuration is the herringbone pattern. This configuration is characterized by the tilting of all of the tires in a row such that their axis of rotation are parallel to one another and lie substantially in the same plane, but are offset. Rows of tires are stacked atop one another with the directions of the axis of rotation of successive rows being alternated, in a single plane, approximately equally about the vertical direction. Depending on the geometry of the tires being stacked, the angle between the rotational axis of tires in successive rows varies from approximately 10 degrees to approximately 60 degrees.
Packing tires in this herringbone pattern simultaneously provides stability and efficient use of the storage and/or transportation space while preventing permanent deformation of the tires in the stack so long as the period of storage is not excessive. Typical storage periods range from a week to approximately a month. In a herringbone pattern of stacking, the outer diameter tread portion of one tire is nestled against the sidewall near the hub or bead region of another tire. Compression of the sidewall at the hub region of a tire along the axis of rotation includes less risk of creating permanent deformation of the tire than compression of the tread portion in the same axial direction. Thus, the herringbone pattern of stacking is preferred to the stovepipe stacking arrangement.
Unfortunately, however, no fully automated process or apparatus exists to stack tires in a herringbone pattern. Thus, tires are typically packed into the storage and/or transportation vessels by hand. Using conventional hand-packing techniques, however, is labor intensive, relatively slow, and inherently unreliable. It can become quite cumbersome to pack tires uniformly from the floor of the vessel to the ceiling when doing so by hand. Large tires can be difficult to manipulate manually, especially when loading tires near the top of the vessel. Hand stacking can be inconsistent and unreliable and can yield non-uniform, unstable loads. Further, there exists no reliable system or method for compressing the hand-stacked tires to improve the stability of the load.
To partially remedy these problems, devices have been developed to help in the compression of the tire stacks. These systems, however, continue to rely heavily upon manual labor to accomplish the stacking of the tires. For example, U.S. Pat. No. 5,697,294, which is hereby incorporated by reference, discloses an exemplary tire compression device. U.S. Pat. No. 5,816,142, which is also hereby incorporated by reference, discloses another tire compression device, this one being intended for use with a forklift. This device allows a preset load to compress a stack of tires as the stack is loaded into a truck trailer. Initially, the forklift elevates and supports the preset load. Then, once the tires are stacked beneath the elevated load, the forklift allows the load to be lowered against a stack of tires. As a result, the load exerts a downward pressure on the stack of tires, thereby compressing the tires. Once the initial stack is compressed, additional uncompressed tires are loaded on top of the stack until the stack reaches the ceiling of the truck trailer. Then, the forks of the forklift are raised, partially releasing the pressure applied against the compressed portion of the stack and allowing it to expand while compressing the previously uncompressed portion until the entire stack is equally compressed. This process is repeated, stack by stack, until the entire trailer is full of stacked, compressed tires. Other devices exist that load tires into a truck trailer and similarly compresses the tires within the trailer. In each of these cases, the tires are maintained in compression by the storage and/or transportation vessel itself. There is no assurance, however, that the vessel was designed or is suitable to maintain such loads. In fact, vessels are frequently damaged as a result of such use.
When the storage and/or transportation within the vessel is complete, the tires are typically manually unloaded from the vessel onto a conveyor or pallet. A variety of implements exist for such handling of tires. For example, U.S. Pat. No. 3,822,526, which is hereby incorporated by reference, discloses a device for manipulating tires. No device, however, is known in the art that sufficiently eliminates the difficulties of manually stacking tires in a storage and/or transportation vessel and unloading the compressed tires from the same vessel. Moreover, no sufficient device currently exists to eliminate the reliance on the vessel to maintain a compressive load on the tires. Further, although there are loaders for tires, for example, a machine loader and a loader to create a straight stack of tires, none of the loaders currently in the art are designed to stack tires in a herringbone pattern.
The lack of a fully automated system and method for loading and compressing tires in a storage and/or transportation vessel adds unnecessary cost to the shipment of tires. Current systems such as those described above are capable of loading tires into a vessel at the rate of approximately two tires per minute per person. Furthermore, the maximum number of workers who can efficiently cooperate to load tires into a single vessel is three. Therefore, the maximum rate at which a single vessel can be loaded is approximately six tires per minute. At this rate, a single
Leimbach Wendell B.
Marshall James Wheeler
American Express Travel Related Services Company Inc.
Kim Sang
Matecki Kathy
Snell & Wilmer L.L.P.
Wood David P.
LandOfFree
Automated tire loading/unloading and compression system and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automated tire loading/unloading and compression system and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated tire loading/unloading and compression system and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3003140