Automated system and method for identifying and measuring...

Registers – Coded record sensors – Particular sensor structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S472010, C235S462430, C235S462220, C235S462310

Reexamination Certificate

active

06554189

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates generally to an automated tunnel-type laser scanning package identification and measuring system arranged about a high-speed conveyor structure used in diverse package routing and transport applications, and also a method of identifying and measuring packages having bar code symbols on surfaces facing any direction with a 3-D scanning volume.
2. Brief Description of the Prior Art
In many environments, there is a great need to automatically identify and measure objects (e.g. packages, parcels, products, luggage, etc.) as they are transported along a conveyor structure. While over-the-head laser scanning systems are effective in scanning upwardly-facing bar codes on conveyed objects, there are many applications where it is not practical or otherwise feasible to ensure that bar code labels are upwardly-facing during transportation under the scanning station.
Various types of “tunnel” scanning systems have been proposed so that bar codes can be scanned independently of their orientation within the scanning volume of the system. One such prior art tunnel scanning system is disclosed in U.S. Pat. No. 5,019,714 to Knowles. In this prior art scanning system, a plurality of single scanline scanners are orientated about a conveyor structure in order to provide a limited degree of omni-directional scanning within the “tunnel-like” scanning environment. Notably, however, prior art tunnel scanning systems, including the system disclosed in U.S. Pat. No. 5,019,714, are incapable of scanning bar code systems in a true omni-directional sense, i.e. independent of the direction that the bar code faces as it is transported along the conveyor structure. At best, prior art scanning systems provide omni-directional scanning in the plane of the conveyor belt or in portions of planes orthogonal thereto. However, true omnidirectional scanning along the principal planes of a large 3-D scanning volume has not been hitherto possible.
Also, while numerous systems have been proposed for automatically identifying and measuring the dimensions and weight of packages along a high-speed conveyor, prior art systems have been very difficult to manufacture, maintain, and operate in a reliable manner without the use of human supervision.
Thus, there is a great need in the art for an improved tunnel-type automated laser scanning package identification/measuring system and a method of identifying and measuring packages transported along a high-speed conveyor system, while avoiding the shortcomings and drawbacks of prior art scanning systems and methodologies.
OBJECTS AND SUMMARY OF THE PRESENT INVENTION
Accordingly, a primary object of the present invention is to provide a novel tunnel-type automated package identification and measuring system that is free of the shortcomings and drawbacks of prior art tunnel-type laser scanning systems and methodologies.
Another object of the present invention is to provide a fully automated package identification and measuring system, wherein an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel.
Another object of the present invention is to provide a fully automated package identification and measuring system, wherein mathematical models are created on a real-time basis for both the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. Another object of the present invention is to provide a fully automated package identification and measuring system, wherein the mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
Another object of the present invention is to provide such a system, in which a plurality of holographic laser scanning subsystems are mounted on a scanner support framework, arranged about a high-speed conveyor belt, and arranged so that each scanning subsystem projects a highly-defined 3-D omni-directional scanning volume with a large depth-of-field, above the conveyor structure so as to collectively provide omni-directional scanning within each of the three principal scanning planes of the tunnel-type scanning system.
Another object of the present invention is to provide such a system, in which each holographic laser scanning subsystem projects a highly-defined 3-D omni-directional scanning volume that has a large depth-of-field and is substantially free of spatially and temporally coincident scanning planes, to ensure substantially zero crosstalk among the numerous laser scanning channels provided within each holographic laser scanning subsystem employed in the system.
Another object of the present invention is to provide such a system, in which a split-type conveyor is used with a gap disposed between its first and second conveyor platforms, for mounting of an omni-directional projection-type laser scanning subsystem that is below the conveyor platforms and ends substantially the entire width of the conveyor platform.
Another object of the present invention is to provide such a system, wherein a plurality of holographic laser scanners are arranged about the conveyor system so as to produce a bi-directional scanning pattern along the principal axes of a three-dimensional laser scanning volume.
A further object of the present invention is to provide a system, in which each holographic laser scanner employed in the system projects a three-dimensional laser scanning volume having multiple focal planes and a highly confined geometry extending about a projection axis extending from the scanning window of the holographic scanner and above the conveyor belt of the system.
Another object of the present invention is to provide an automated package identification and measuring system, wherein singulated packages can be detected, dimensioned, weighed, and identified in a fully automated manner without human intervention, while being transported through a laser scanning tunnel subsystem using a package conveyor subsystem.
Another object of the present invention is to provide such a system, wherein a package detection and dimensioning subsystem is provided on the input side of its scanning tunnel subsystem, for detecting and dimensioning singulated packages passing through the package detection and dimensioning subsystem.
Another object of the present invention is to provide such a system, wherein a data element queuing, handling and processing subsystem is provided for queuing, handling and processing data elements representative of package identification, dimensions and/or weight, and wherein a moving package tracking queue is maintained so that data elements comprising objects, representative of detected packages entering the scanning tunnel, can be tracked along with dimensional and measurement data collected on such detected packages.
Another object of the present invention is to provide such a system, wherein a package detection subsystem is provided on the output side of its scanning tunnel subsystem.
Another object of the present invention is to provide such a system, wherein the tunnel scanning subsystem provided therein comprises a plurality of laser scanning subsystems, and each such laser scanning subsystem is capable of automatically generating, for each bar code symbol read by the subsystem, accurate information indicative of the precise point of origin of the laser scanning beam and its optical path to the read bar code symbol, as well as produce symbol character data representative of the read bar code symbol.
Another object of the present invention is to provide such a system, wherein the plurality of laser scanning subsystems generates an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automated system and method for identifying and measuring... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automated system and method for identifying and measuring..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated system and method for identifying and measuring... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3064227

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.