Automated soldering system

Electric heating – Heating devices – Tool or instrument

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S490000, C228S051000

Reexamination Certificate

active

06563087

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention:
The present invention relates to an automated soldering system with an intelligent power supply that can automatically configure the power output to interchangeable soldering cartridges, where the soldering cartridges include readable information to allow the power supply to properly power the cartridge to achieve a desired, entered operating temperature. In particular, the present invention encompasses the use of an identifier on the cartridges and a reader coupled to the power supply for immediate recognition of the type of soldering cartridge to be used. In addition, to inform the user that the station is operational, a LED indicator preferably located proximate to the interchangeable cartridge and activated by the automated soldering system displays various light signals for the user.
2. General Background and State of the Art:
Soldering stations have been in use for many years. The typical soldering station includes two components: a soldering iron composed of either a connector and a cartridge or a handpiece, a heater and a soldering tip, and a power supply for supplying current to the soldering iron. The cartridges have a soldering tip, which is used to solder, located at one end of the cartridge and a connector at the opposite end which can be inserted into a handle attached to a power cable extending from the power supply. The power cable may have many wires capable of carrying power and information between the power supply and the cartridge.
Various cartridges have different configurations for the tip. Because of the varying configurations, the tip temperature must be optimized for effective soldering. The thermal properties of the various tip configurations as well as the shape and the size of the tip will impact the optimal temperature to solder using that particular tip. Because the tips are integral within the cartridge, each cartridge becomes unique, its power requirements distinguishable only by the type of tip. Therefore. traditional soldering stations, which had only one power output level, did not optimize the functionality of the different cartridge tips available in the market. Further, cartridges with varying tip designs had to be manufactured around the parameters of a particular power supply. The second generation of soldering stations allowed the user to adjust the power output of the power supply using dials and knobs to better define the power required. These adjustable soldering stations could accommodate a far broader range of soldering tip configurations as compared to the traditional soldering stations.
Each soldering process has an optimum temperature which must be maintained within set, often specified, limits for proper soldering. The control dials on the second generation power supplies can be adjusted to provide the appropriate amount of power to obtain this optimal temperature. Before heating elements had sensors built into them, the user would have to measure the tip temperature using special thermometers, then adjust the control dials, then measure the temperature, then adjust the control dials, and so on. Using such an iterative procedure, the user would fine-tune the actual temperature until it equaled the optimal temperature. Later technology incorporated sensors within the tip itself to measure the temperature, thereby eliminating the need for the time-wasting iterative process. Accordingly, soldering stations were developed that could utilize information from sensors located in the cartridge to automatically fine-tune the power output to reach the optimal temperature.
The development of cartridge sensors changed the role of the power supply and the user. The sensors within the cartridge relayed information back to the power supply, and the power supply displayed the temperature on a display. However, even these new technologies encountered serious shortcomings. To begin with, the temperature sensor was not located near the tip surface used for soldering. Instead, the temperature sensor was located near the heating elements inside of the tip. As a result, the sensed temperature of the heating element within the cartridge did not reflect the true temperature of the tip. Second, because of the distance between the sensor and the tip, the temperature gradient between the sensor and the tip could often be steep. Therefore, although the automated procedures may have brought the tip temperature closer to being within range of the optimal tip temperature, the user still had to make manual adjustments and use iterative processes to narrow the range until the actual tip temperature equaled the optimal tip temperature.
Another solution to the temperature differentials was the use of a central processing unit (“CPU”) within the power supply to control the temperature of the heating element located inside of the tip. A user would measure the actual tip temperature using a thermometer and then calculate the difference between the actual tip temperature and the temperature setting on the soldering station. This difference was input into the CPU, and the CPU adjusted the power output according to an iterative process or preprogrammed algorithms. Although the user skill level required to measure and to calculate the difference was certainly lower than that required to adjust the dials, the process still expended valuable time.
A more significant issue involved the removal of a cartridge having a given tip configuration from the connector and the replacement with a cartridge having a different tip configuration. This occurs because, during the course of soldering in any given application, the user may need to change the cartridge several times to have the optimal tip configurations. Every time a cartridge is replaced, the user must go through the same iterative procedures discussed above to reach the optimal temperature.
Inefficient time expenditure is not the only unwanted consequence of the present state of the art. For example, if the tip temperature is not adjusted to the proper level, the soldering iron is operable to solder an application or type of solder even though the setting is unsuitable for the application or type of solder. If soldering is performed at an inappropriate temperature, the electronic component to be soldered may be damaged by the excessive heat or the solder connection could be weak if the tip was either not hot enough or too hot. Because several different cartridges and tips could-be utilized during a given soldering procedure, it is probable that a user may solder an application without waiting for the tip to reach the optimal temperature. Even if a CPU is being used to adjust the tip temperature, the difference between the actual temperature and the optimal temperature must be input, until the difference is de minimis. Clearly, performing competent soldering requires the operator to be skilled in the art of temperature adjustment as well as soldering technique. When a significant amount of time is spent adjusting the soldering temperature, the efficiency and cost performance of the soldering process is reduced. This increases the average cost of goods and decreases profit margins.
There is thus a need in the soldering industry to provide an easier and more automated means of adjusting the tip temperature for different tips, as well as a reliable mechanism to inform the operator when the adjustment has been accomplished.
BRIEF SUMMARY OF THE INVENTION
The present invention is directed to a processor-controlled automated soldering system and a method for its operation that determines the characteristics of a particular soldering cartridge tip, adjusts the output power as appropriate and provides signals to the operator to assure adjustment has been accomplished. In particular, the present invention creates an automated system of cartridge recognition, using reader and identifier technology, to preset the power output level of the power supply station. The identifier, which is attached to the cartridge, contains encoded information about the various properties of the ca

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automated soldering system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automated soldering system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated soldering system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3079622

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.