Automated point of care detection system including complete...

Chemical apparatus and process disinfecting – deodorizing – preser – Analyzer – structured indicator – or manipulative laboratory... – Calorimeter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S067000, C422S062000, C422S063000, C422S064000, C422S068100, C422S051000, C422S072000, C422S105000, C422S081000, C422S105000, C422S065000, C422S091000, C435S007100, C436S043000, C436S046000, C436S047000

Reexamination Certificate

active

06656428

ABSTRACT:

INTRODUCTION
The invention relates in part to analytical instruments providing cost effective, automated testing for low to medium sample volume applications. The invention also relates in part to components, features, disposables, reagent delivery systems, accessories, and methods for using such instruments. The analytical instruments of the invention may be used for analytical testing, and in particular, for automated medical diagnostic testing. The invention describes a completely self-contained test surface and reagent delivery device that is used in conjunction with the instrument of the invention to perform an automated sample analysis. The instrument and cartridge system are well suited to the medical point of care testing environment or other analytical testing environments.
BACKGROUND OF THE INVENTION
The following description of the background of the invention is provided simply as an aid in understanding the invention and is not admitted to describe or constitute prior art to the invention.
Conventional automated clinical and chemical analyzers tend to be large, complex, multi-module instruments. For example, U.S. Pat. No. 5,902,548 describes an analyzer for high-throughput analysis. Such analyzers can be expensive, difficult to maintain, and require a significant amount of floor or bench space. Sample-processing is generally handled independent of the analyzer and requires manual placement of the processed sample into the sampling position of the analyzer. Such analyzers are not cost effective for the analysis of low sample volumes nor for providing single test results.
Most conventional analyzers use a modular approach to the various assay functions required to complete an assay procedure. For instance, one module may deliver a test device to a section of the analyzer for sample application. The next module would be used to introduce one or more reagents. Another module may be required to incubate the test device and another one may be required to wash the test device prior to the next cycle of reagent additions. A final module would be used to analyze the result generated within or on the test device. Some devices, such as that disclosed in U.S. Pat. No. 6,042,786 integrate a keyboard as an on-board instrument component. As discussed in U.S. Pat. No. 5,332,549, separate module may be required to remove the spent test device from the analyzer. Such designs require precise placement of the test device to insure proper operation within the analyzer. At the same time, the analyzer conveyance system must allow the test device to be placed and removed without binding within the carrier position. U.S. Pat. Nos. 5,167,922 and 5,219,526 describe an arrangement of test device and carrier features within an analyzer that serve to lock the test device into a carrier. With these types of analyzers the entire test device must be rotated or conveyed to different processing stations.
Many automated analyzers use some form of aspirator in combination with a probe or pipet tip device to automatically draw and dispense a sample or reagent from one container to a test container. For example, U.S. Pat. No. 5,983,734 discloses an analyzer with an aspiration-type sample delivery device. Similarly, U.S. Pat. No. 6,063,340 discloses an analyzer with aspiration and dispensing probes for sample and reagent delivery. To avoid contamination, the tips often must be disposed of after each reagent addition or washed prior to contact with the next solution. Disposing of tips after each use adds a high disposable cost to the instrument. Continuous washing of a reagent delivery system means there is generation of a high volume of liquid biohazardous/toxic waste that must be routinely disposed of. Multiple samplings of a single reagent container increases the possibility that the reagent will become contaminated. If the tip contacts the solution, the sides of the tip or probe may be covered with solution (sample or reagent). The residual solution may then be inappropriately dispensed to the test container or to another reagent container. The contamination of the next reagent may lead to improper assay results not only in the first test being conducted but in all subsequent tests using that reagent container. The use of an aspiration type device means that the reagent containers are exposed to the open environment leading to evaporation issues and potential contamination. Fluctuations in the aspiration system can lead to significant contamination of the entire reagent delivery mechanism and to variable fluid volumes being dispensed. Most systems use multiple sample reagent containers and dispense a unit of reagent with the initiation of each new assay and contain a separate module that contains the actual test device or surface.
Many automated analyzers use centrifugal force for the movement and volume control of reagents. Use of centrifugal force requires a radial array of reagents and precise fluid path constructions. Centrifugal force is used to drive fluid over a barrier and into the next reagent or reaction chamber until a detection member is encountered. High precision molding requirements make individual rotary test devices extremely expensive. Multiple fluid paths and reaction chambers within the fluid path to introduce new reagents and allow incubation time make the design of test devices even more difficult. Subjecting the test device to multiple bursts of centrifugal force can introduce errors in the flow of fluids along the desired pathway. U.S. Pat. No. 5,912,134 discloses an assay cartridge using channels, capillaries, reservoirs, and stop junctions to control reagent delivery, and sample dilution within the cartridge as a function of capillary, gravitational, and centrifugal forces.
A few assay systems have used discrete reagent containers, such as ampules or capsules or bags. The reagents are released by a breaking or piercing mechanism. Reagent delivery is then based on a passive gravity feed and thus can not ensure that the complete volume of the required reagent is dispensed. The breaking or piercing mechanism may also interfere with reagent delivery. If the breaking or piercing mechanism is in contact with more than one reagent container it is possible that it can carryover a reagent that affects the next reagent delivered to the test surface. In some cases, once the piercing member has penetrated the reagent container the fluid flows through a channel within the piercing member to be delivered to the test surface by capillary action or gravity feed. For example, U.S. Pat. No. 5,968,453 describes a reagent cartridge that is open to a sampling device for removal of reagent. Conversely, U.S. Pat. No. 6,043,097 describes a complex reagent container consisting of a sealed lid, and a valve that controls opening and closing of one or more chambers in the container. The reagent chamber holds a glass ampule that is crushed to release reagent, and a filter element.
Other cartridges use a pierceable member to exclude sample from the test cartridge until the member is pierced and then deliver a specific amount of sample by capillary action to the test cartridge. U.S. Pat. Nos. 5,888,826 or 5,602,037 describes a device where downward displacement of a vacuum chuck is used to press down on one section of the test cartridge. Lowering the sample cup of the test cartridge lowers a piercing member into the pierceable member. When vacuum is applied an amount of sample may be aspirated into the sample cup.
U.S. Pat. No. 4,689,204 describes a reagent delivery system that utilizes a series of plunger-like cylinders of varying heights for reagent delivery. As an upper plate-like actuator is depressed onto the various cylinders a sample or reagent is delivered to a reaction tube. The reagent delivery sequence is controlled by the height of the cylinders. The shorter the cylinder the later in the sequence the reagent is delivered. The reaction tube contains a coarse filter between sample addition to the reaction tube and the final reagent delivery to the reaction tube. At the end of the reaction tube i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automated point of care detection system including complete... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automated point of care detection system including complete..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated point of care detection system including complete... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3111188

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.