Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
2001-06-01
2003-09-02
Michalsky, Gerald A. (Department: 3753)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
Reexamination Certificate
active
06615070
ABSTRACT:
TECHNICAL FIELD
The present invention is generally related to using computational geometry and numerical interpolation techniques to develop a procedure that automatically outlines the contours of the planning volume for sarcoma tumor beds prior to designing brachytherapy treatment plans for soft-tissue sarcoma.
BACKGROUND OF THE INVENTION
Soft-tissue sarcomas are tumors that arise in the soft tissues that connect, support and surround other parts of the body, such as muscles, tendons, fat, joint linings, and blood vessels. Although about one-half of the cases occur in the arms and legs, soft-tissue sarcomas are known to develop at any site in the body. Sarcoma tumors occur primarily in the second and sixth decades of life, but may occur at any age and, typically, the incidence rises with increasing age and is more prevalent in men.
There are more than fifty different types of soft-tissue sarcomas and sarcoma-like growths, at least thirty-five of which are malignant. Approximately 6,000 new cases of soft-tissue sarcoma are diagnosed each year in the United States. Additionally, the large majority of soft-tissue sarcomas are greater than 5 cm in size, requiring a combination of treatment techniques. Fortunately, soft-tissue sarcomas are relatively rare, representing only about one percent of all cancer cases, but they provide unique challenges in detection and treatment.
In the past, the standard treatment for soft-tissue sarcoma included amputation of limbs or radical surgery. In current practice, soft-tissue sarcomas are typically treated with a more conservative surgery combined with radiation therapy. The surgical removal of the tumor is the primary treatment. However, adjuvant (or additional) treatment with radiation therapy greatly increases the effectiveness of sarcoma treatment. Radiation therapy may be used before, during and/or after the surgical removal of the sarcoma. Typically, treatment involving both surgery and radiation therapy will include external-beam radiotherapy or brachytherapy.
Brachytherapy is an advanced cancer treatment that delivers radiation therapy from within the body (as opposed to external application of radiation to the tumor and surrounding tissues). The benefit of brachytherapy is that a high dose of radiation may be applied to the tumor or tumor bed (where the tumor was removed) while reducing the dose to surrounding healthy tissues.
In application, brachytherapy may be used to treat soft-tissue sarcomas in two ways. In one approach, during surgery, after the surgeon removes the tumor, the radiation oncologist implants a series of catheters into the tumor bed. Several days after the operation, radiotherapeutic seeds are inserted into each of these catheter tubes. These seeds stay in the catheter tubes for several days, delivering a high dose of radiotherapy to the area of the tumor. When the treatment is completed, both the radiotherapeutic seeds and the catheters are removed. The second form of brachytherapy is called high dose rate intra-operative radiation therapy. In this procedure, all the radiotherapy is actually delivered during the operation. This procedure requires a specially shielded operating room where both the surgery and the radiation therapy can be given. However, the high dose rate approach often requires a subsequent course of external beam radiation therapy.
The form of adjuvant brachytherapy in which catheters filled with radioactive seeds are inserted into the tumor or tumor bed is promising. However, this technique is limited by the difficulties of precisely placing catheter tubes into position and applying the correct amount of radiation to the affected areas while limiting the exposure of “healthy” tissues to the radiation. Several factors contribute to the difficulty of applying this treatment modality to soft-tissue sarcoma. First, each anatomical site and associated patient/tumor geometry is unique. Second, the tumor bed is usually of irregular shape. Third, the catheters, inserted during surgery, are often non-uniformly spaced and non-coplanar. Any of these factors may result in over or under treating the affected areas, as well as radiating healthy tissues.
In current practice, the planning volume for adjuvant brachytherapy treatment for soft-tissue sarcoma is typically derived via a tedious manual process, often resulting in the volume of the sarcoma not being appropriately determined. In the manual process, the outline of the volume is determined based on the positions of the catheters by hand calculations and planner observations. The current process for determining the planning volume is subjective, inconsistent, time-consuming, and highly dependent on the human planner. Thus, the current methods for determining the planning volume of sarcomas for brachytherapy may result in variability in the placement of the radiation seeds inside the catheters and variability in the distribution of radiation to the sarcoma bed.
In order to provide the most effective radiation therapy, the radiation dose distribution must cover all of the tumor bed and at the same time affect as little as possible of the healthy surrounding tissue. The ultimate location of the radiation seeds is one of the most important factors affecting the radiation dose distribution. Since the desired dose distribution is affected by the planning volume and the placement of the catheters and radiation seeds, the accurate derivation of the planning volume is a fundamental problem. The current practice does not provide a consistent, efficient and accurate method for determining the planning volume.
Thus, a heretofore unaddressed need exists in the industry to address the aforementioned deficiencies and inadequacies.
SUMMARY OF THE INVENTION
In order to increase the effectiveness of catheter brachytherapy treatment, the delivery of the radioactive sources to the affected areas (or planning volume) is critical. The present invention focuses on the automated generation of planning tumor volumes for the treatment of soft-tissue sarcomas. By using an automated contouring algorithm the planning tumor volume can be determined and the optimal placement and insertion of radioactive seeds can be designed to provide the most effective brachytherapy treatment.
The present invention provides a system and method for automatically determining the planning volume of a sarcoma by algorithmic manipulation of catheter coordinate input data. Initially, the catheters are inserted into the sarcoma bed during a surgical procedure. The volume of the sarcoma is divided into cross-sectional slices in which the catheters appear as “centers.” Around these centers, a circle having a certain radius is drawn. The radius of the circles is an indicator of the area over which the radioactive seeds will provide effective treatment. By configuring the radii of the circles to have sufficient size, the entire surface of each of the cross-sectional slices may be covered and, therefore, treated with the radioactive seeds. Optimally, the circles are configured such that all areas of the sarcoma receive treatment, while only a minimum of healthy tissue is exposed to the radiation.
The automated planning volume algorithm is comprised of a number of subroutines or sub-algorithms. The algorithm, utilizing computational geometry, numerical interpolation, and artificial intelligence (AI) techniques to manipulate the catheter coordinates, returns the planning volume in digitized and graphical forms in a matter of minutes. After the coordinates are inputted, the algorithm will automatically determine the “span,” or furthest distance between centers, and order the circles in a normal numerical progression. The algorithm is able to self-correct the numbering of the centers such that a smooth curve is defined which encompasses the affected tissue and limits incorporation of healthy tissue within the curves. Then, the algorithm selects tangent points for each circle and determines the corresponding tangent lines for groups of circles. By iteration of the tangent lines, the algorithm generates a series of c
Georgia Tech Research Corporation
Michalsky Gerald A.
Thomas Kayden Horstemeyer & Risley LLP
LandOfFree
Automated planning volume contouring algorithm for adjuvant... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automated planning volume contouring algorithm for adjuvant..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated planning volume contouring algorithm for adjuvant... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3058937