Optical waveguides – Miscellaneous
Reexamination Certificate
2002-02-26
2004-09-28
Lee, John D. (Department: 2874)
Optical waveguides
Miscellaneous
C385S137000, C269S021000
Reexamination Certificate
active
06798970
ABSTRACT:
TECHNICAL FIELD
This invention relates to handling, aligning and placing fibers onto a substrate.
BACKGROUND
It is often desirable to align multiple fibers into an array of parallel fibers. One method of accomplishing this is to place fibers into parallel grooves that have been formed in the surface of a substrate. Typically, the placement of the fibers into the grooves is performed manually and requires careful and precise operations by skilled operators. In some cases, it is desirable to align multiple “etched” fibers, i.e., fibers that have been stripped of their outer protective coatings and then etched to reduce the outer diameter of the fiber.
SUMMARY
According to an aspect of this invention, an apparatus for placing a fiber on a substrate, includes a base, a supporting member attached to the base, a first placement head attached to the support member, the first placement head having an extendable plunger slidably coupled to the first placement head, the first placement head having an airflow channel formed proximate to a tip of the plunger, a substrate holder attached to the base, wherein, during operation of the apparatus, the substrate holder holds a substrate beneath the plunger mechanism, and wherein, during operation of the apparatus, a vacuum source draws a flow of air through the airflow channel, and wherein, during operation of the apparatus, the placement head picks up and holds a fiber against the plunger tip using forces associated with the flow of air.
One or more of the following features may also be included: grooves formed in a surface of the substrate. A movable stage configured to move beneath and perpendicular to the first placement head, and wherein, during operation of the apparatus, the longitudinal axis of the substrate grooves are held parallel to the longitudinal axis of the fiber and the plunger. A removable substrate pallet, wherein during operation of the apparatus, the substrate is held on the substrate pallet and the substrate pallet is held on the substrate carrier. A fiber holder attached to the supporting member, wherein during operation the fiber holder holds a fiber between the plunger mechanism and a substrate groove, and wherein the fiber holder holds the fiber in longitudinal alignment with the plunger tip and the substrate groove. A groove-shaped tip, wherein during operation of the apparatus, the fiber is drawn against the groove-shaped tip by forces associated with the flow of air through the first placement head. A second placement head attached to the support member, the second placement head having a second extendable plunger slidably coupled to the second placement head, the second placement head having a second airflow channel formed proximate to a tip of the second plunger, wherein the second plunger is longitudinally aligned with the fiber held by the fiber holder and the grooves of the substrate held by the substrate holder, the second extendable plunger further including a groove-shaped tip, wherein during operation of the apparatus, the vacuum source draws a flow of air through the second airflow channel and the second placement head picks up a section of the fiber and holds the fiber within the groove-shaped tip of the second plunger by forces associated with a flow of air through the second placement head. Wherein the fiber holder comprises a movable stage configured to move perpendicular to the first placement head. Wherein the fiber holder also includes a removable fiber magazine, wherein during operation of the apparatus, the fiber magazine holds a plurality of fibers and the fiber magazine is held on the fiber holder. Wherein the fiber magazine also includes a plurality of grooves formed in a bottom surface of the magazine, each of the plurality of grooves holding one of the plurality of fibers, and at least one airflow hole formed in the bottom of each of the plurality of grooves, wherein during operation of the apparatus, a vacuum source draws a flow of air through the airflow holes and holds each of the plurality of fibers within a corresponding one of the plurality of grooves.
According to a further aspect of this invention, an apparatus for handling optical fibers, includes a fiber magazine having a plurality of grooves formed in a surface of the magazine, wherein during operation of the apparatus, each of the plurality of grooves holds one of the plurality of fibers, at least one airflow hole formed in the bottom of each of the plurality of grooves, wherein during operation of the apparatus, a vacuum source draws a flow of air through the airflow holes, the forces associated with the flow of air holding the fibers within the plurality of grooves.
One or more of the following features may also be included: wherein the fiber magazine also includes an airflow plenum formed in a central region of the magazine, the airflow plenum connected to one or more of the airflow holes formed in the grooves, wherein, during operation of the apparatus, a vacuum source draws air from the plenum and from the airflow holes. Wherein, during operation of the apparatus, an end of each of the plurality of fibers is held protruding beyond a front edge of the fiber magazine, and wherein, each time the end of a fiber is placed by the apparatus the corresponding fiber being held in the corresponding magazine groove is dislodged from the magazine groove. Wherein the fiber magazine comprises a removable fiber magazine. The apparatus may also include an axle for holding spools, wherein during operation, at least one spool is placed on the axle, each spool holding an opposite end of a fiber that is being held within one of the plurality of grooves, wherein the spools are removable from the fiber magazine.
According to a further aspect of this invention a method of placing a fiber on a substrate, including holding a substrate having a groove beneath a first placement head, flowing air past a plunger slidably coupled to the first placement head, picking up and holding a fiber against a tip of the plunger using forces associated with the flow of air, and extending the plunger to place the fiber into the substrate groove.
One or more of the following features may also be included: Moving the substrate with a first movable stage, the first movable stage configured to move beneath and perpendicular to the first placement head. Wherein holding a substrate having a groove also includes holding a longitudinal axis of the substrate groove parallel to the longitudinal axis of the fiber and the plunger. Wherein moving the substrate with a movable stage also includes holding the substrate on a removable substrate pallet, and holding the removable substrate on the first movable stage. Also holding a fiber between the plunger mechanism and the substrate in longitudinal alignment with the plunger tip and the substrate groove. Wherein picking up and holding a fiber against a tip of the plunger also includes picking and holding a fiber against a groove-shaped tip. Wherein flowing air also includes flowing air through a channel formed proximate to the groove-shaped tip, and drawing air through the channel during operation of the apparatus. Also including holding the substrate having a groove beneath a second placement head, flowing air past a second plunger slidably coupled to the second placement head, picking up and holding a fiber against a tip of the second plunger using forces associated with the flow of air, and extending the plunger to place the fiber into a second substrate groove. Wherein holding a fiber also includes holding a fiber with a fiber magazine, and moving the fiber magazine with a movable stage configured to move perpendicular to the first placement head. Also includes holding a plurality of fibers with the fiber magazine.
According to a further aspect of this invention, a method of presenting optical fibers to an apparatus includes holding a plurality of fibers within a plurality of grooves formed in a surface of a fiber magazine, wherein holding also includes drawing air through at least one airflow hole formed in the bottom of each of
Brown Robert
Leclaire Jeffrey E.
Lu Huizong
Sullivan John L.
Lee John D.
Song Sarah
Zygo Corporation
LandOfFree
Automated placement of optical fibers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automated placement of optical fibers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated placement of optical fibers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3191153