Package making – Methods – Group forming of contents into a unit
Reexamination Certificate
1999-07-07
2002-02-26
Hughes, S. Thomas (Department: 3726)
Package making
Methods
Group forming of contents into a unit
C053S143000, C053S544000, C053S498000, C053S054000, C053S501000, C053S502000, C053S504000, C053S425000
Reexamination Certificate
active
06349526
ABSTRACT:
TECHNICAL FIELD
This invention relates to automated packaging of substrates, particularly (but not exclusively) food-related. Preferred embodiments relate to the automated conveying, selecting, and packaging of food, particularly under aseptic or near-aseptic conditions.
BACKGROUND ART
Currently the food industry in particular makes much use of manual labour for packaging. The performance of such packaging systems is notoriously variable, due in part, it is believed, to many of the manual operations associated with packaging being highly repetitive. This is especially the case with the packaging of meat and meat products, where the packers work for comparatively long periods in chilled and damp conditions. Such work can often involve moving heavy items, as well as items that are difficult to handle under the conditions. It is perhaps not surprising that injury to personnel is common, and absenteeism frequent. These factors combine to produce high turnover of staff, and a high and recurring cost of training replacement staff.
Excessive manual handling of food at any stage in its manufacture, including the packaging stage, results in a significant increase in both the type and the number of microbial contaminants. This effect can be compounded by the modern trend towards centralised packing of food, which, although it offers considerable financial benefit, greatly increases the potential for cross-contamination and recontamination. Microbial contamination leads to reduced shelf-life, deterioration in product quality, appreciable waste of material, and overall a considerable loss in value. At least as important as this loss in value, microbial contamination is a major source of human food-borne illnesses.
Automation has the potential to reduce costs, by increasing throughput and reducing or virtually eliminating the requirement for training of staff. Well-designed automated lines can help reduce the incidence and extent of microbial contamination of food: however, the risk of cross-contamination may actually be enhanced because a greater proportion of the throughput is exposed to the same contact surfaces, and if a pathogenic strain is present, the number of consumers becoming ill could increase dramatically.
The packaging industry has already developed a considerable amount of high speed equipment capable of handling, packing and collating very small, regularly shaped items presented in perfect orientation, particularly confectionery. To date, automation of food packaging lines has been limited to packaging small, regularly shaped, fully processed foods; in the meat industry, for example, products such as burgers, pies, and sausages are packaged in a semi-automatic manner in a few factories. Many established methods rely on “pick and place” procedures which are inherently slow, and the use of robotics in such methods adds considerably to the cost.
DISCLOSURE OF INVENTION
A packaging line embodying the present invention may be able to handle substrates such as foods of a wide variety of different shapes and sizes, at high throughput speeds, and is particularly well-suited to running under aseptic or near-aseptic conditions.
In a first aspect, the present invention provides a method of packaging a substrate comprising (i) conveying the substrate on a conveyor into the field of view of an image analysis system and obtaining an image of the substrate on the conveyor from said system, (ii) comparing the image of the substrate against standard images held in a database, and thereby identifying the substrate and optionally its orientation,(iii) optionally analysing the image of the identified substrate on the conveyor to determine the location of the substrate transverse to the conveying direction, (iv) optionally analysing the substrate image to determine the alignment of the substrate relative to the conveying direction, (v) analysing the substrate image and, with reference to the database if necessary, determining the footprint dimensions of the substrate, (vi) optionally, using the data obtained in any of steps ii-v to effect positional adjustment of the substrate on the conveyor, (vii) selecting a package or a first package component according to the footprint dimensions,(viii) transferring the substrate to the package or component, (ix) providing further components of the package if necessary, and integrating said further components with the first component, and (x) sealing the package. Preferably, the method is conducted substantially within a cavity (eg a chamber or tunnel), said cavity being provided with a plurality of UV sources distributed around the walls of the cavity and directed radially inwardly such that UV radiation from the UV sources maintains substantially aseptic conditions within the cavity throughout the process. The method may form part of a process of handling edible substrates wherein one of the upstream operations includes reducing microbial numbers on the surface of said edible substrate by exposing said edible substrate to UV-irradiation, preferably said upstream operation being effected according to WO94/24875 (or U.S. Pat. No. 5,597,597), incorporated herein by reference.
The image analysis system serves to detect the presence of a substrate in its field of view and may, indeed, serve to locate its position more precisely within that field of view. This detection may be used to synchronise the operation of one or more processes effected downstream.
The conveyor is preferably an indexing conveyor. The conveyor preferably has means defining compartments for confining substrates. Preferably the compartments are defined by barriers to movement (relative to the conveyor) in the conveying direction, whereas at least some displacement in the transverse direction is possible.
I may provide a conveyor having a conveying direction, and means for displacing subjects on the conveyor transversely to the conveying direction. The displacing means may comprise a pusher and means for displacing the pusher over the conveyor, close to it but generally not in contact with it. Thus the pusher may be carried by an endless belt or chain which extends over the conveyor and is preferably drivable selectively in either direction.
I may provide a packaging station adapted to produce a package including a bottom component and one or more liner components (e.g. an absorbent pad and/or a support sheet having support protrusions such as corrugations or raised dimples). The bottom component may have a pair of end portions which are bent upwardly to provide end walls, which may support an overwrapping film out of available to be selected, for whatever reason, the substrate is rejected.
The selection of a component or package may be used to effect sorting and/or grading of the substrate. “Sorting” as used herein means determining to which category of product a substrate belongs, and selecting a component or package according to a) the footprint dimensions of the substrate image, and b) the category of product to which the substrate belongs; while “grading” as used herein means determining to which class within a category a substrate belongs, and selecting a component or package according to a) the footprint dimensions of the substrate image, and b) the class to which the substrate belongs within a category of product. Accordingly, the method preferably further comprises sorting and/or grading the substrate according to a) weight, or b) product requirements, or c)customer specifications, or d) colour (including discolouration, such as any caused by eg bruising or blood splash), or e) any combination of a-d. Preferably, the method further comprises sorting and/or grading the substrate according to product requirements or customer specifications. Preferably, the method further comprises sorting and/or grading the filled package (ie the package itself and the substrate(s) contained therein) according to product requirements or customer specifications, as an additional contact with a substrate within the package. Note: unless the context requires otherwise, “footprint” and related terms are
Compton Eric
Hughes S. Thomas
Larson & Taylor PLC
LandOfFree
Automated packaging does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automated packaging, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated packaging will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2941898