Automated on-line evaporating light scattering detection to...

Liquid purification or separation – With means to add treating material – Chromatography

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S656000, C210S659000, C073S061520, C422S070000

Reexamination Certificate

active

06210571

ABSTRACT:

TECHNICAL FIELD
The present invention relates to quantifying (or measuring the amounts) of reaction compounds which are fraction collected in microtiter plate format.
BACKGROUND OF THE INVENTION
Systems exist for the parallel synthesis of various chemical compounds in microtiter plate format. Accordingly, many liquid handling systems have been developed for automated parallel synthesis in conjunction with such microtiter plate formats. High throughput liquid chromatography/mass spectrometry systems capable of isolating compounds on the basis of their molecular weight have also been developed. However, a system for easily and efficiently determining the total collected masses of compounds which are fraction collected in microtiter plate format has proven elusive.
In general, existing high throughput liquid chromatography/mass spectrometry systems isolate compounds by fractionation into fraction collector tubes which are individually removable from a rack. Numerous problems exist when attempting to quantify the total mass of each of the compounds collected in the various fraction collector tubes. First, each tube in the rack needs to be individually removed, weighed and its weight recorded. The compounds are then fraction collected into the individual tubes in the rack. Subsequent to fraction collection, the tubes are removed one after another from the rack and are placed in a device which concentrates them down by drying the contents of the tube. After the contents of the tube have been concentrated down by drying, the dried tubes are individually re-weighed and the net weight of each sample in the fraction collection tubes is then determined by comparing the initial weight of the empty tube with the weight of the tube with the dried compound therein. The weight information so determined allows the compounds to be redissolved with a volatile solvent to a desired set point molarity. The tubes are then placed into a rack and an aliquot is delivered into a microtiter plate for use in a biological assay.
In high throughput synthesis operations, the number of samples can be quite large so the operation of separately weighing, re-weighing, tracking, and labeling a very large number of fraction collector tubes becomes quite cumbersome. Moreover, when weighing and re-weighing relatively small volume fluid samples, inaccuracies in the weight of the tubes themselves may account for larger weight differences than the weight of the compound fraction collected therein. As such, significant errors can be introduced to the net weight of each collected compound, and its final concentration upon dissolution. In addition, special devices such as racks and an apparatus for concentrating down fluid samples have to be used with the dried down products later having to be reformatted into a microtiter plate format.
SUMMARY OF THE INVENTION
The present invention provides methods and systems for measuring the total masses of individual compounds present in fluid samples, and is particularly well adapted for use with fluid samples prepared in microtiter plate format. In a preferred aspect, the individual compounds arc isolated by fluid separation systems including high performance liquid chromatography columns and supercritical fluid columns. Small portions of the individual compounds isolated by fluid separation are then analyzed by a mass spectrometer, (which determines the compound molecular weight), and by an evaporative light scattering detector, (which determines the total masses of each of the isolated compounds passing therethrough). The present invention provides a single pass system which measures the masses of the individual compounds diverted into fraction collectors in real-time, as follows.
The signal generated by the mass spectrometer is used to determine the interval of time during which fraction collection is to be carried out. The signal generated by the evaporative light scattering detector is used to determine the total amount of mass diverted therethrough during the interval of time during which fraction collection is carried out. By knowing the portion of fluid sample diverted into the evaporative light scattering detector, (relative to the portion of fluid sample which is directed to fraction collection), it is then possible to calculate the total masses of each of the individual isolated compounds as they are fraction collected.
By selecting intervals of time for fraction collection on the basis of when a desired compound is present in sufficient concentration, (as indicated by the signal strength from the mass spectrometer), the individual isolated compounds can be purified as they are fraction collected. Thus, an advantage of the present invention is that, during only a single pass through the system, each fluid sample is partitioned into isolated compounds which are individually weighed in real time as they pass into fraction collectors.
An additional advantage of the present invention is that microtiter plate formats can be used both for sample preparation reactions and for fraction collection of the individual compounds present in such samples. Accordingly, the present invention provides a single-pass system for the synthesis, isolation, weight measurement, and delivery of compounds in microtiter plate formats.
Another advantage of the present invention is that it is able to determine the total mass of the individual isolated compounds present in microtiter plate fluid samples at the same time that these individual compounds are being fraction collected in microtiter plate format. As such, only a single pass of a fluid sample through the system is required to isolate the individual compounds in the fluid sample, to fraction collect the individual isolated compounds and determine the total collected masses of these isolated compounds.
Therefore, an additional important advantage of the present microtiter plate format single pass system is that it completely avoids individually removable fraction collection tubes. Accordingly, it is not necessary to individually weigh individual tubes containing fractionated fluid samples. Consequently, it is not necessary to separately track and label such tubes or to transfer individual tubes between various liquid handling, concentrator and fraction collection devices. As such, the problem of individual tubes being misplaced or transposed and the amount of time involved with transferring individual collection tubes is completely avoided. Thus, another advantage of the present invention is that by using a high density microtiter plate format, the present invention reduces the actual amount of material which needs to be synthesized, (as compared to existing non-microtiter plate format systems), thereby resulting in cost savings through the reduced costs of synthetic chemicals. By using a small volume microtiter system, solvent consumption is reduced. Moreover, being a small volume system, significant reduction in the disposal of waste streams is achieved.
An additional advantage of the present small volume microtiter plate format is that, in preferred aspects, more difficult chromatographic separations can be achieved with the resolution of present invention's preparatory or semi-preparatory chromatographic column where the resolution approaches that of a conventional smaller analytical chromatographic column.
Existing systems which remove and re-weigh fraction collection tubes individually can not be operated with the small fluid sample volumes of the present microtiter based system since inaccuracies in the weight of the tube itself may account for larger weight differences than the weight of the collected fluid sample therein. As such, significant errors can be introduced to the net weight of each product. The present invention completely avoids this problem.
In the present invention, a plurality of fluid samples are first provided in a standard microtiter plate format. An autosampler is then used to sequentially load the fluid samples onto a fluid separation system which preferably comprises a preparatory or semi-preparatory high pe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automated on-line evaporating light scattering detection to... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automated on-line evaporating light scattering detection to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated on-line evaporating light scattering detection to... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2508136

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.