Automated machine control gap for conical fluid dynamic...

Electrolysis: processes – compositions used therein – and methods – Electrolytic erosion of a workpiece for shape or surface... – Gap maintenance or defined tool-workpiece gap

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C205S680000, C204S22400M, C204S280000

Reexamination Certificate

active

06764590

ABSTRACT:

FIELD OF THE INVENTION
This invention pertains generally to the field of fluid dynamic bearings, and more particularly to etching grooves in a conical element of a fluid dynamic bearing.
BACKGROUND OF THE INVENTION
Disc drives, including magnetic disc drives, optical disc drives and magneto-optical disc drives, are widely used for storing information. A typical disc drive has one or more discs or platters which are affixed to a spindle and rotated at high speed past a read/write head suspended above the discs on an actuator arm. The spindle is turned by a spindle drive motor. The motor generally includes a shaft having a thrust plate on one end, and a rotating hub having a sleeve and a recess into which the shaft with the thrust plate is inserted. Magnets on the hub interact with a stator to cause rotation of the hub relative to the shaft.
In the past, conventional spindle motors frequently used conventional ball bearings between the hub and the shaft and the thrust plate. However, over the years the demand for increased storage capacity and smaller disc drives has led to the read/write head being placed increasingly close to the disc. Currently, read/write heads are often suspended no more than a few millionths of an inch above the disc. This proximity requires that the disc rotate substantially in a single plane. Even a slight wobble or runout in disc rotation can cause the disc to strike the read/write head, damaging the disc drive and resulting in loss of data. Because this rotational accuracy cannot be achieved using ball bearings, the latest generation of disc drives utilize a spindle motor having fluid dynamic bearings on the shaft and the thrustplate to support a hub and the disc for rotation.
In a fluid dynamic bearing, a lubricating fluid such as gas or a liquid or air provides a bearing surface between a fixed member and a rotating member of the disc drive. Dynamic pressure-generating grooves formed on a surface of the fixed member or the rotating member generate a localized area of high pressure or a dynamic cushion that enables the spindle to rotate with a high degree of accuracy. Typical lubricants include oil and ferromagnetic fluids. Fluid dynamic bearings spread the bearing interface over a large continuous surface area in comparison with a ball bearing assembly, which comprises a series of point interfaces. This is desirable because the increased bearing surface reduces wobble or run-out between the rotating and fixed members. Further, improved shock resistance and ruggedness is achieved with a fluid dynamic bearing. Also, the use of fluid in the interface area imparts damping effects to the bearing which helps to reduce non-repeat runout. However, to be effective, the pressure-generating grooves must be very accurately defined, both as to shape and depth, on a high-speed basis.
One generally known method for producing the dynamic pressure-generating grooves is described in U.S. Pat. No. 5,758,421, to Asada, (ASADA), hereby incorporated by reference. ASADA teaches a method of forming grooves by pressing and rolling a ball over the surface of a workpiece to form a groove therein. The diameter of the ball is typically about 1 mm, and it is made of a material such as carbide which is harder than that of the workpiece. This approach and the resulting fluid dynamic bearing, while a tremendous improvement over spindle motors using a ball bearing, is not completely satisfactory. One problem with the above method is the displacement of material in the workpiece, resulting in ridges or spikes along the edges of the grooves. Removing these ridges, for example by polishing or deburring, is often a time consuming and therefore a costly process. Moreover, to avoid lowering yields, great care must be taken not to damage the surface of the workpiece.
A further problem with the above method is due to a recent trend in disc drives toward higher rotational speeds to reduce access time, that is the time it takes to read or write data to a particular point on the disc. Disc drives now commonly rotate at speeds in excess of 7,000 revolutions per minute. These higher speeds require the shaft and the hub to be made of harder material. Whereas, in the past one or more of the shaft, the sleeve or the hub, could be made of a softer material, for example brass or aluminum, now all of these components must frequently be made out of a harder metal such as, for example, steel, stainless steel or an alloy thereof. These metals are as hard or harder than the material of the ball. Thus, the above method simply will not work to manufacture fluid dynamic bearings for the latest generation of disc drives.
Another method for producing the grooves of a fluid dynamic bearing is described in U.S. Pat. No. 5,878,495, to Martens et al. (MARTENS), hereby incorporated by reference. MARTENS teach a method of forming dynamic pressure-generating grooves using an apparatus, such as a lathe, having a metal-removing tool and a fixture that moves the workpiece incrementally in the direction in which a pattern of grooves is to be formed. The metal-removing tool forms the grooves by carrying out a short chiseling movement each time the workpiece is moved. This approach, while an improvement over the earlier one in that it does not produce ridges that must be removed, is also not completely satisfactory. For one thing, this approach like that taught by ASADA is typically not suitable for use with harder metals, which in addition to being more difficult to machine are often brittle and can be damaged by the chiseling action. Moreover, because each groove or portion of a groove must be individually formed and the workpiece then moved, the process tends to be very time consuming and therefore costly. Furthermore, the equipment necessary for this approach is itself expensive and the metal-removing tool is subject to wear and requires frequent replacement.
Another method for producing the grooves involves a conventional etching process as described in U.S. Pat. No. 5,914,832, to Teshima (TESHIMA), hereby incorporated by reference. TESHIMA teaches a process in which the workpiece is covered with a patterned etch resistant coating prior to etching so that only the exposed portions of the workpiece are etched. While this approach avoids many of the problems of the previously described methods, namely the formation of ridges around the grooves and the inability to form grooves in hard metal, it creates other problems and therefore is also not wholly satisfactory. One problem is the time consumed in applying and patterning the etch resistant coat. This is particularly a problem where, as in TESHIMA, the resist coat must be baked prior to patterning or etching. Another problem is that the coating must be removed after etching. This is frequently a difficult task and one that if not done correctly can leave resist material on the workpiece surface resulting in the failure of the bearing and destruction of the disc drive. Yet another problem with this approach is that each of the steps of the process requires the extensive use of environmentally hazardous and often toxic chemicals including photo resists, developers, solvents and strong acids.
Accordingly, there is a need for an apparatus and method for forming grooves in a workpiece made of a hard metal to manufacture fluid dynamic bearings suitable for use in a disc drive. It is desirable that the apparatus and method allow the grooves to be formed quickly and cheaply. It is also desirable that the apparatus and method not require expensive equipment or the use of a metal-removing tool that must be frequently replaced. It is further desirable that the apparatus and method not use an etch resistant material during manufacture that could contaminate the workpiece leading to the failure of the bearing and destruction of the disc drive.
As the result of the above problems, electrochemical machining of grooves in a fluid dynamic bearing has been developed. A broad description of ECM is as follows. ECM is a process of removing material metal without the use of mechanical or the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automated machine control gap for conical fluid dynamic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automated machine control gap for conical fluid dynamic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated machine control gap for conical fluid dynamic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3251872

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.