Automated in-line filter changing apparatus

Metal working – Means to assemble or disassemble – Means to assemble or disassemble container and fluid component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C221S119000, C221S121000, C029S712000, C029S718000, C029S466000, C029S520000

Reexamination Certificate

active

06578259

ABSTRACT:

TECHNICAL FIELD
The present invention generally relates to the filtration of media or fluids in connection with a fluid preparation, sampling, delivery, and/or testing process. More particularly, the present invention relates to the automated inline replacement or “changing out” of used or spent filters with unused or new filters.
BACKGROUND ART
Filter elements of varying types are utilized to filter media or fluids flowing through a fluid line or circuit which forms a part of a fluid handling system. The fluid system may serve any number of processes involving one or more preparation, sampling and analytical tasks. A few examples include high-throughput liquid sample assaying, high-pressure liquid chromatography, and dissolution testing. Filter elements are often installed “in-line” with such systems, and for this purpose can be housed within some type of filter unit equipped with fittings adapted for coupling and decoupling with the circuit in which fluid is moving. As with most engineered devices, it is well-known that filter elements have a limited useful life. That is, after a period of service, filters are subject to degradation, clogging and other conditions which render them no longer useful or at least cause them to impede or restrict the performance of the fluid line in which they are installed. Hence, filters must be replaced periodically, preferably according to a predetermined maintenance schedule. Depending on the process with which fluid conveying and filtering are associated, the down-time and effort required in replacing filters can be a significant criterion. It follows that any means by which the task of replacing filters can be automated, or by which the automation of filter replacement can be improved, is welcomed by the pertinent industries.
One approach to addressing the recognized problems associated with filter replacement is disclosed in U.S. Pat. No. 5,450,982 to Van Den Oever. The embodiments disclosed therein provide an automated filter changing apparatus consisting of a cylindrical filter dispensing device, a cylindrical filter clamping device, a cylindrical filter discharge device, and a means for transporting individual filters to these devices. The devices are arranged in either a linear or rotary arrangement. In the linear arrangement, a motor-powered lead screw and associated slide member are utilized to transport the filters. In the rotary arrangement, a turntable is substituted for the slide member.
According to the above-cited disclosure, a vertical stack of filters is loaded into a hollow cylinder of the filter dispenser, and the lowermost filter drops into an aperture of the transporting means when the transporting means reaches the appropriate position. The transporting means then moves the filter to a position under the clamping device. The clamping device is a pneumatic ram through which a portion of a fluid sampling line runs. The ram bears down onto the filter and establishes a connection between the filter and the fluid sampling line, so that fluid flowing through the sampling line passes through the filter and thereby becomes filtered. The filter is then transported to the discharge device, where the filter is positioned under a hollow cylinder and over a second pneumatic ram. The second pneumatic ram forces the filter upwardly into the hollow cylinder, and the filter is retained there with the aid of a retaining ring.
It is believed that there remains a need for a more practical and effective solution to providing an automated method and apparatus for replacing filters, especially filters of the type which operate in-line with a fluid circuit. There is a particular need for automating the replacement of filters which have inlet and outlet fittings extending outwardly from their housings. Such filters are often supplied in a stacked or columnar form in which each filter in the stack is connected to adjacent filters by mating the fittings of adjacent filters together. The present invention therefore provides a novel automated apparatus for changing or replacing filters, especially in-line filters, as described hereinbelow.
DISCLOSURE OF THE INVENTION
The present invention generally provides a filter changing or replacing system comprising a filter dispensing assembly and/or a filter clamping assembly. Each device includes novel attributes which permit the successful implementation of a controlled, automated filter changing process.
The filter dispensing device can be rotated, such as through the use of a motor and associated shaft. The filter dispensing device is adapted to receive filter storage units such as one or more magazines in which a plurality of filters are initially stored as a connected stack. The filter dispensing device includes a filter separating device having a stationary portion. The filter separating device operates to separate one or more stacks of filters into discrete filter units, such that individual filters are sequentially transported from the filter dispensing device, and preferably to a lateral guide track at which filter positioning devices are provided.
The filter clamping assembly is adapted to operate in combination with the filter dispensing device and to receive one or more individual filter units dispensed therefrom, and provides one or more coupling sites which can fluidly communicate with one or more fluid lines. The filter clamping assembly is powered and actuated by means such as a motor and associate lead screw. Alternating or cyclical movement of the filter clamping device decouples used filters from fittings associated with the fluid lines, and couples unused filters to those fittings.
Preferably, a filter position sensing device is provided at the clamping assembly, such as by mounting the sensing device to the lateral guide track, and a clamping position sensing device is additionally provided to monitor the position of a movable portion of the clamping assembly. In this manner, an electronic control unit can be placed in electrical communication with the position sensors and the motors to monitor and control the respective operations of both the filter dispensing device and the filter clamping device, and also coordinate the operations of those devices.
According to a first embodiment of the present invention, a filter dispensing apparatus comprises a rotary member having a longitudinal axis, and a stationary member. The stationary member includes an annular interior surface disposed in coaxial relation to the rotary member. The stationary member also includes an inlet opening, an outlet opening disposed at an axial distance from the inlet opening, and a channel formed on the interior surface. The channel runs along a generally helical path with respect to the longitudinal axis, and has a varying pitch. The pitch of the channel increases with respect to an axial length of the interior surface. The channel communicates with the inlet opening and the outlet opening.
According to a second embodiment of the present invention, a filter dispensing apparatus comprises a rotatable shaft, a filter handling device secured to the shaft and defining a first filter path, and a filter separation device. The filter separation device has an annular interior surface fixedly disposed in coaxial relation to the shaft. The filter separation device includes an entry location disposed in communication with the first filter path, an exit location disposed at an axial distance from the entry location, and a channel formed on the interior surface and defining a second filter path. The channel runs along a generally helical orientation with respect to the shaft, with a varying pitch of the channel increasing with respect to an axial length of the interior surface. The channel communicates with the entry location and the exit location.
According to a third embodiment of the present invention, a filter clamping assembly comprises an actuator device, a first arm, a second arm, a track, and a filter positioning slide. The first arm includes a first fitting disposed in movable relation to the first arm. The second ar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automated in-line filter changing apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automated in-line filter changing apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated in-line filter changing apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3147695

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.