Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
1998-08-05
2001-01-09
Kennedy, Sharon (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C604S065000, C128SDIG001
Reexamination Certificate
active
06171276
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a delivery device including a) a housing, b) a container for a fluid arranged in the housing, the container having an opening, c) a delivery conduit connected in fluid communication with the opening, the conduit having a front end in flow respect distal from the container and a rear end in flow respect proximal to the container, the front end and the rear end defining an axis therebetween and a forward direction and a rearward direction, and d) a pump arranged to deliver fluid at least in a direction from the container through the conduit. The invention also relates to a method for operation such a device.
BACKGROUND
Although delivery devices are known for use in a vast variety of applications the present invention is mainly concerned with injection devices in applications where the injection receiving object is solid or semi-solid and wherein the orientation of the injection device relative the injection receiving object is critical to the proper outcome of the injection. Typical applications are the administration of pharmaceutical preparations to humans or animals where orientation is important for diverse reasons. Depending on the nature of the preparation and the intention of the treatment the target tissue is vital for correct biochemical activity, availability and absorbency period. The intended injection site may for example be subcutaneous, intramuscular or intravenous. The dose delivered is often critical and erroneous treatment may result both from lost preparation due to e.g. inadvertent needle release or partial placement in wrong tissue. Conversely, especially larger volumes may intentionally be distributed at several depth during needle penetration or partially in slow releasing tissue and partially in fast releasing tissue.
These demands can be met also when using the simplest injection devices, such as the common hypodermic syringe, when in the hands of a skilled operator who also may initiate medically relevant corrective measures in case of accidents and malfunction. More or less automated devices has since long existed to enable laymen with limited training performing injections with reasonable safety in critical or emergency situations. Often the devices are designed for single shots only. A general trend in long-term medication is to place the administration responsibility on the patient himself, also in the case of child or disabled persons. Here the demands are still higher. The continuous medication requires the patient to cope with repeated dosing, perhaps with varying dose setting and proper replacement of emptied cartridges with fresh ones as in pen-type injectors. A high degree of automation and control is desirable to avoid mistakes, not only at the mere injections steps but also the critical initiation and preparation steps. Patients dependent on daily administrations also have a legitimate need for convenience and devices discrete enough to be brought around in daily life.
Mechanical automation is provided in common autoinjectors. Typically the user is expected to position the device in proper injection orientation against the skin and operate a trigger button. Stored mechanical energy, e.g. in a spring system, may then perform autopenetration into the tissue, autoinjection of the medical and possibly also automatic needle retraction. Simpler systems may not provide autopenetration but assume the user to make the needle insertion. Hence the devices give the operator little assistance in orienting and localizing the devices in respect to the body. Autoinjectors are also known that require the operator to press the device against the injection site in order to trigger the injector. Typical examples are disclosed in AU 563.551, U.S. Pat. No. 4,717,384, EP 518.416 and WO 93/23110. The help provided by such constructions is limited and inflexible and cannot be adapted for different foreseeable operational or hazardous situations. Pressure rather than position based triggering makes desirable adaptations still more difficult. Generally, once triggering has occurred, either intentionally or inadvertently, the operation sequence proceeds irreversibly. Moreover, the dislocation risks are generally high in mechanical devices due to rebound effects and the forced transitions involved.
Automated devices based on electronic or electromechanical principles have also been proposed. Disregarding here infusion pumps and similar injection devices for primarily hospital or permanent use, where device orientation generally is not critical, several prior patent specifications, as represented by e.g. EP 143.895, EP 293.958, DE 2.710.433, WO 93/02720, WO 95/24233 and WO 97/14459 as well as our copending applications SE 9602610-9 (U.S. 60/021,397) and SE 9602611-7 (U.S. 60/021,293), relates to hand held devices for direct action against the body. The known devices take advantage of automation principles in several respects, such as the precise and reproducible injection possible with electric motors, motor assisted autopenetration and mixing or reconstitution, cartridge identification, sample analysis, injection data collection and manipulation, dose setting, injector orientation relative gravity for proper mixing or deaeration etc. In spite of this diversity the automated devices in this class do not deal with device orientation versus the injection receiving body and do not solve any problem relating thereto.
Accordingly there is a continuing need for injection devices assisting the user in device orientation related handling steps and preventing or ameliorate consequences of mistakes and misuse resulting therefrom, especially useful for patients under self-administration. Although the present invention has a more general utility, it will mainly be described against this background.
SUMMARY OF INVENTION
A main object of the present invention is to avoid the disadvantages and shortcoming of known injection devices as described. A more specific object is to provide an injector assisting the user in proper orientation of the device in relation to the injection site. Another object is to provide a device being flexible and adaptable to different handling and operation situations. Still another object is to prevent or ameliorate consequences of unintended actions or misuse. Another object is to facilitate administration of the preparation in the correct target tissue. Yet another object is to avoid irreversible injection procedures. A further object is to avoid dependence on purely mechanical orientation means. Still another object is to offer orientation assisting means fully compatible with electronic or electromechanical automation means. Yet another object is to provide such devices with high simplicity in handling and suitable for patient self-administration or otherwise requiring limited skill and training.
These objects are reached with a device and method having the characteristics set forth in the appended claims.
By providing an injection device with a proximity sensor and a converter to derive an electromagnetic signal from the sensor several of the abovesaid objects are reached. The signal is immediately available for and compatible with any other electronic or electromechanical automation means present on the injector and reliance on purely mechanical orientation means is avoided. The signal can be recovered without requirements for pressure or high forces. Use of the transformed sensor output is highly flexible and can be adapted to a multitude of operation situations. If used in the device triggering sequence, inadvertent initiation can be avoided by requiring a predetermined characteristic to be present, such as a sustained or repeated signal, or making the signal operable only within a narrow sequence window. Similarly, irreversible operation procedures can be avoided by using the sensor output also for device disabling purposes, for example to stop an injection if the device is moved to an improper position. For similar reasons the device can be made selective in respect of target tissue by allowing injec
Adam Markus
Bosse Rainer
Himbert Hans
Hjertman Birger
Holte Anders
Blyveis Deborah
Dinsmore & Shohl LLP
Kennedy Sharon
Pharmacia & UpJohn AB
LandOfFree
Automated delivery device and method for its operation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automated delivery device and method for its operation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated delivery device and method for its operation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2451021