Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Automatic route guidance vehicle
Reexamination Certificate
1998-10-21
2001-07-10
Cuchlinski, Jr., William A. (Department: 3661)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Automatic route guidance vehicle
C701S036000
Reexamination Certificate
active
06259980
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to an automated control system for a remote vehicle and, more particularly, to such a control system which allows for specific operations to be manually overridden, as desired.
2. Description of the Prior Art
Numerous attempts have been made heretofore to automate the operations of remote vehicles or to control the operation of vehicles automatically for the convenience of their human operators or for reasons of increased safety. The patent literature provides numerous examples of know appliances of this nature. For example, U.S. Pat. No. 5,400,864 to Winner et al. discloses a system wherein automatic speed control of a vehicle is provided, along with the spacing of the vehicle from a preceding vehicle. The control system may be overridden for a limited time so that a driver may accelerate to pass another vehicle.
U.S. Pat. No. 4,735,274 to Good et al. discloses an automatic parallel parking system for a vehicle wherein scanners provide vehicle position information to a microprocessor which controls the steering while the driver controls vehicle speed.
U.S. Pat. No. 4,361,202 to Minovitch relates to an automated road transportation system wherein the individual vehicles are provided with both manual controls and an automatic guidance system which causes the vehicle to follow a guide rail embedded in the roadway. A steering wheel torque sensor is connected so that a torque applied to the steering wheel by an occupant will place control of the vehicle under manual control. The guidance system uses signals from various sensors to control steering and speed and a passenger may designate a destination which the guidance system will then use in selecting routes.
U.S. Pat. No. 4,155,417 to Ziems relates to an automatic steering system for a farm vehicle wherein the vehicle may be automatically steered in response to sensed data and wherein the automatic steering is disengaged by a steering input applied to the manual steering wheel by a human driver.
The following U.S. patents disclose various mechanisms for automatic control of a motor vehicle:
Pat. No.
Inventor(s)
Issued
5,369,591
Broxmeyer
11/29/94
5,318,143
Parker et al.
06/07/94
5,299,130
Ono
03/29/94
4,931,930
Shyu et al.
06/05/90
2,138,426
Nelson
11/29/38.
It was with knowledge of the foregoing state of the technology that the present invention has been conceived and is now reduced to practice.
SUMMARY OF THE INVENTION
The present invention relates to apparatus for automatically controlling operation of a self-propelled vehicle which comprises a plurality of operating systems for performing specific functions relating to the operation of the vehicle. Each of the operating systems includes controller devices for automatically performing a specific function and selectively operable manual components for overriding the controller devices and manually performing the specific function. A central processor coordinates operation of the operating systems. The operating systems include: (1) a steering wheel and a steering controller having an active mode for automatically operating the steerable wheel under the direction of the central processor and an inactive mode allowing manual operation of the steering wheel; (2) an accelerator pedal and a throttle controller having an active mode for automatically controlling fuel delivery to a fuel injector under the direction of the central processor and an inactive mode allowing manual operation of the accelerator pedal; (3) a brake pedal and a braking controller having an active mode for automatically operating the brakes under the direction of the central processor and an inactive mode allowing manual operation of the brake pedal; and (4) a gear ratio selector and a transmission controller having an active mode for automatically operating the multi-ratio transmission under the direction of the central processor and an inactive mode allowing manual operation of the gear ratio selector.
In arriving at the disclosed innovations, the inventors have been involved in the process of automating an off-the-shelf vehicle which served both as a platform for a wide variety of investigations into machine intelligence, and as a technology demonstrator capable of using the latest state-of-the art sensors, actuators, and software techniques. When the automation process was completed, onboard computers were capable of controlling all major vehicle components, including the throttle, steering, brakes, transmission, and starter. As constructed, the system can be manually overridden and operated normally, for example, permitting the vehicle to be driven to test sites as needed. The vehicle also permits operation in both semi-autonomous and learning modes. The semi-autonomous mode permits operator inputs to be fused with vehicle sensor inputs, which are then used for vehicle control. An example of this is parking with collision avoidance. The operator steers the vehicle in the general direction of the desired parking spot and the collision avoidance system controls the speed to assure a rapid, collision free maneuver. Because the vehicle systems all include feedback from the user interfaces (steering, throttle, brakes and transmission) it is also possible for the system to apply learning algorithms to match sensor input to operator control commands. Safety, reliability, simplicity, durability and cost are among the significant design criteria for the automation effort.
This installation is a device that allows a vehicle to be steered, for drive gears to be selected, for speed and braking to be regulated by a remote means as well as manually on demand. The remote systems may be cable connected to a computer or a wireless receiver obtaining transmitted data from an isolated source. The computer provides motor control signals and can provide data from a variety of sensors. The data to the controls permits instantaneous response to road conditions and obstacles whether or not there is an operator present. In the event of an emergency the operator could gain completer control by the slightest touch of the steering wheel, brakes, gear selector, or override button. The device is a simple, inexpensive installation which can, because of its compact size, be installed in many vehicles especially where assistance to the operator may be required in an emergency situation; i.e. ambulance, police, fire or rescue vehicles, military hardware such as tanks and armored personnel carriers. The internal components are naturally air cooled, to maintain a higher operating efficiency in the event of excessive engine overheating. The configuration provides a natural baffling for a well distributed air flow. The cool air source is fan forced through the firewall, routed through the equipment and exhausted within the engine compartment. The positioning of the assembly allows for easy accessibility to internal vehicle air which is constant, cleaner and cooler then outside ducted forced air.
Under normal automatic driving conditions, the device monitors the position of the front wheels via a positioning encoder and corrections are automatically implemented as needed by the computer source to maintain that course. Motor torque information is also available by monitoring motor current, either by a motor load resistor, or a motor driver current mirror. During this operation, a motor output turns both the power steering input and the steering wheel, through a gearhead, allowing a load cell to turn freely. Since there is no opposing force by the steering wheel, there is no force on the load cell. At any point, the operator may intervene and maintain full control of the vehicle by simply turning the steering wheel. At this instant, a twisting movement is applied to the load cell due to resistance from a dual input. As a result, the signal from the load cell shuts off the motor while the encoder continues to monitor shaft position for as long as the vehicle is in motion and allows the operator to have complete control in a normal manner. Upon re
Peck Alex N.
Sullivan Edward V.
Anderson Terry J.
Cuchlinski Jr. William A.
Hoch, Jr. Karl J.
Northrop Grumman Corporation
Pipala Edward
LandOfFree
Automated control system for remote vehicles does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automated control system for remote vehicles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated control system for remote vehicles will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2514520