Automated computerized scheme for distinction between benign...

Image analysis – Applications – Biomedical applications

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S173000

Reexamination Certificate

active

06694046

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to a method and system for the computerized analysis of radiographic images, and more specifically, to the determination of the likelihood of malignancy in pulmonary nodules using artificial neural networks (ANNs).
The present invention also generally relates to computerized techniques for automated analysis of digital images, for example, as disclosed in one or more of U.S. Pat. Nos. 4,839,807; 4,841,555; 4,851,984; 4,875,165; 4,907,156; 4,918,534; 5,072,384; 5,133,020; 5,150,292; 5,224,177; 5,289,374; 5,319,549; 5,343,390; 5,359,513; 5,452,367; 5,463,548; 5,491,627; 5,537,485; 5,598,481; 5,622,171; 5,638,458; 5,657,362; 5,666,434; 5,673,332; 5,668,888; 5,732,697; 5,740,268; 5,790,690; 5,832,103; 5,873,824; 5,881,124; 5,931,780; 5,974,165; 5,982,915; 5,984,870; 5,987,345; 6,011,862; 6,058,322; 6,067,373; 6,075,878; 6,078,680; 6,088,473; 6,112,112; 6,138,045; 6,141,437; 6,185,320; 6,205,348 as well as U.S. patent application Ser. Nos. 08/173,935; 08/398,307 (PCT Publication WO 96/27846); 08/536,149; 08/900,188; 08/900,189; 09/027,468; 09/028,518; 09/092,004; 09/121,719; 09/141,535; 09/471,088; 09/692,218; 09/716,335; 09/759,333; 09/760,854; and 09/773,636; PCT patent applications PCT/US99/24007; PCT/US99/25998; PCT/US00/41299; PCT/US01/00680; PCT/US01/01478 and PCT/US01/01479 and U.S. provisional patent application Nos. 60/193,072 and 60/207,401, all of which are incorporated herein by reference.
The present invention includes use of various technologies referenced and described in the above-noted U.S. Patents and Applications, as well as described in the references identified in the following LIST OF REFERENCES by the author(s) and year of publication and cross-referenced throughout the specification by reference to the respective number, in parentheses, of the reference:
LIST OF REFERENCES
1. N. F. Khouri, M. A. Meziane, E. A. Zerhouni, et al., “The solitary pulmonary nodule: assessment, diagnosis, and management,” Chest 91, 128-133 (1987).
2. K. Nakamura, H. Yoshida, R. Engelmann, et al., “Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks,” Radiology 214, 823-830 (2000).
3. M. L. Giger, K. Doi, and H. MacMahon, “Image feature analysis and computer-aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields,” Med. Phys. 15, 158-166 (1988).
4. X. W. Xu, and K. Doi, “Development of an improved CAD scheme for automated detection of lung nodules in digital chest images,” Med. Phys. 24, 1395-1403 (1997).
5. H. P. Chan, K. Doi, C. J. Vyborny, et al., “Computer-aided detection of microcalcifications in mammograms methodology and preliminary clinical study,” Invest. Radiol. 23, 664-671 (1988).
6. K. Doi, H. MacMahon, S. Katsuragawa, et al., “Computer-aided diagnosis in radiology: Potential and pitfalls,” Eur. J. Radiol. 31, 97-109 (1999).
7. S. Katsuragawa. K. Doi, and H. MacMahon, “Image feature analysis and computer-aided diagnosis in digital radiography: Detection and characterization of interstitial lung disease in digital chest radiographs,” Med. Phys. 15, 311-319 (1988).
8. M. Pilu, A. W. Fitzgibbon, and R. B. Fisher, “Ellipse-specific direct least-square fitting,” Proc. of the IEEE International Conference on Image Processing, 599-602 (1996).
9. A. W. Fitzgibbon, M. Pilu, and R. B. Fisher, “Direct least squares fitting ellipses,” Proc. of the 13th International Conference on Pattern Recognition, 253-257 (1996).
10. T. Ishida, S. Katsuragawa, T. Kobayashi, et al., “Computerized analysis of interstitial disease in chest radiographs: improvement of geometric-pattern feature analysis,” Med. Phys. 24, 915-924 (1997).
11. U. Bick, M. L. Giger, R. A. Schmidt, et al., “A new single-image method for computer-aided detection of small mammographic masses,” Proc. CAR—Computer Assisted Radiology, H. U. Lemke, K. Inamura, C. C. Jaffe, et. al., eds., 357-363 (1995).
12. Z. Huo, M. L. Giger, C. J. Vyborny, et al., “Analysis of spiculation in the computerized classification of mammographic masses,” Med. Phys. 22, 1569-1579 (1995).
13. P. A. Lachenbruch, “Discriminant analysis,” Chapters 1 and 2, pages 1-39, Hafner Press, 1975.
14. R. A. Johnson and D. W. Wichern, “Applied multivariate statistical analysis,” Section 5.3, pages 184-188, Prentice Hall, New Jersey, 1992.
15. B. Sahiner, H. P. Chan, N. Petrick, et al., “Computerized characterization of masses on mammograms: The rubber band straightening transform and texture analysis,” Med. Phys. 24, 516-526 (1998).
16. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” In: D. E. Rumelhart, J. L. McClelland, eds. Parallel distributed processing: explorations in the microstructure of cognition. Vol 1. Cambridge, Mass.: MIT Press, 318-362 (1986).
17. Y. Jiang, R. M. Nishikawa, D. E. Wolverton, et al., “Malignant and benign clustered microcalcifications: automated feature analysis and classification,” Radiology 198, 671-678 (1996).
18. C. E. Metz, “ROC methodology in radiologic imaging,” Invest. Radiol. 21, 720-733 (1986).
19. C. E. Metz, B. A. Herman, and J. H. Shen, “Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously distributed data,” Stat. Med. 17, 1033-1053 (1998).
The entire contents of each related patent and application listed above and each reference listed in the LIST OF REFERENCES, are incorporated herein by reference.
Discussion of the Background
The differential diagnosis of pulmonary nodules on chest images is a difficult task for radiologists. Malignancy accounts for only 20% of all solitary pulmonary nodules on chest images (see Reference 1); however, most patients have been examined by computed tomography (CT) for a definite diagnosis. (See Reference 2) If radiologists could confirm confidently that many nodules are benign based on chest images, some unnecessary CT examinations would be avoided.
As disclosed in the above-cross-referenced International application No. PCT/US99/25998, in an effort to determine whether a nodule was benign or not, the outline of a nodule was drawn manually by radiologists. Various objective features were determined by use of the outline, and the likelihood of malignancy was determined by use of artificial neural networks (ANNs). Receiver operating characteristic (ROC) analysis indicated an encouraging result, that the Az value of the ANN output was greater than the average Az value obtained by radiologists in distinguishing between benign and malignant nodules. However, if a manual process were required for radiologists to draw the nodule outline, the practicality for utilizing the computer output as a second opinion to assist radiologists' image interpretation would be limited.
SUMMARY OF THE INVENTION
Accordingly, an object of this invention is to provide a new and improved automated computerized method and system for implementing a computer-aided diagnostic (CAD) technique to assist radiologists in distinguishing benign and malignant lung nodules.
Another object of this invention is to provide a new and improved automated computerized method and system for the analysis of the likelihood of malignancy in solitary pulmonary nodules on chest images, wherein manual identification of nodules is avoided or simplified.
Another object of this invention is to provide a new and improved method and system for the analysis of the likelihood of malignancy in solitary pulmonary nodules using image classifiers including a linear discriminate analyzer and artificial neural networks.
A further object of this invention is to provide a new and improved method and system for the analysis and determination of the likelihood of malignancy in solitary pulmonary nodules whereby it is possible to reduce the number of follow-up CT imaging ordered by radiologists.
Another object of this invention is to provide a computer program product including a storage medium storing a novel program for performing the steps of the metho

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automated computerized scheme for distinction between benign... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automated computerized scheme for distinction between benign..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated computerized scheme for distinction between benign... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3329812

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.