Chemistry: molecular biology and microbiology – Apparatus – Including condition or time responsive control means
Reexamination Certificate
1998-01-09
2001-07-17
Beisner, William H. (Department: 1744)
Chemistry: molecular biology and microbiology
Apparatus
Including condition or time responsive control means
C435S286400, C435S286700, C435S294100, C435S303300, C435S305200
Reexamination Certificate
active
06261832
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to compositions and methods for treating mammalian disease conditions that are debilitating, fatal, hereditary, degenerative and/or undesirable. More specifically, the present invention relates to the transplantation of normal, or genetically transduced, or cytocline-converted myogenic cells into malfunctioning, and/or degenerative tissues or organs.
2. Description of the Prior Art
MYOBLAST PROPERTIES
In mammals, myoblasts are the only cell type which divide extensively, migrate, fuse naturally to form syncytia, lose their major histocompatibility Class I (MHC 1) antigens soon after fusion, and develop to occupy 50% of the body weight in humans. These combined properties render myoblasts ideal for gene transfer and somatic cell therapy (SCT). Myoblast therapy is a combined SCT and gene therapy.
MYOBLAST THERAPY
Although the role of myoblasts/satellite cells in myogenesis and muscle regeneration dated back to the early 1960s (Konigsberg, I. R., Science, 140:1273 (1963). Mauro, A. J., Biophys. Biochem. Cytol., 9:493-495 (1961)), their use in animal therapy was not reported until 1978 (Law, P. K., Exp. Neurol., 60:231-243 1978)).
The first myoblast transfer therapy (MTT) on a Duchenne muscular dystrophy (DMD) boy on Feb. 15, 1990 marked the first clinical trial on human gene transfer. Its success was reported (Law, P. K. et al., Lancet, 336:114-115 (1990); Kolata, G. The New York Times, Sunday, (Jun. 3, 1990)). Unlike bone marrow transplant which strictly replaces genetically abnormal cells with normal ones, MTT actually inserts, through natural cell fusion, all the normal genes within the nuclei of the donor myoblasts into the dystrophic myofibers to repair them. In addition, donor myoblasts also fuse among themselves, forming genetically normal myofibers to replenish degenerated ones. Thus, full complements of normal genes are integrated, through a natural developmental process of regeneration, into the abnormal cells and into the abnormal organ.
The U.S. Patent Office issued to this inventor a patent (U.S. Pat. No. 5,130,141) entitled “Composition for and methods of treating muscle degeneration and weakness” on Jul. 14, 1992.
In October, 1993, the Food and Drug Administration (FDA) officially began regulating somatic cell therapy (SCT) with a definition of “autologous, allogenic, or xenogeneic cells that have been propagated, expanded, selected, pharmacologically treated, or otherwise altered in biological characteristics ex vivo to be administered to humans and applicable to the prevention, treatment, cure, diagnosis, or mitigation of disease or injuries.” (Federal Register, 58:53248-53251 (1993)).
MTT falls under the umbrella of SCT and myoblasts and its physical, genetic or chemical derivatives become potential biologics in the treatment of mammalian diseases.
As of May 25, 1994 the FDA has granted permission for Cell Therapy Research Foundation (CTRF) to charge $63,806 per subject. CTRF is an non-profit 501 (c) (3) research foundation founded by the inventor in 1991. Authorization by the FDA for CTRF to recover costs from subjects of these clinical trials is extremely important to establish the scientific credibility MTT and CTRF deserve, quoting the Jun. 17, 1994 edition of the Memphis Health Care News, “Permission to bill for an Investigational product is granted rarely,” says FDA spokesman Monica Revelle, “Applicants must endure numerous procedures, and must have what looks like a viable product at the end of the rainbow. It's used mainly to support testing of promising technology by small companies.” This statement was made in regard to research at CTRF.
At this time CTRF holds the first and only FDA-approved human clinical trial under an Investigational New Drug (IND) application on MTT. It is extremely important to realize that CTRF has been working closely with the FDA to establish criteria and policies in the approval process of this IND for genetic cell therapy. The use of viral vector mediated gene therapy on human neuromuscular diseases has not met FDA approval.
CELL THERAPY WITH MYOBLASTS
The cell is the basic unit of all lives. It is that infinitely small entity which life is made of. With the immense wisdom and knowledge of the human race, we have not been able to produce a living cell from nonliving ingredients such as DNA, ions, and biochemicals.
Cell Culture is the only method known to man for the replication of cells in vitro. With proper techniques and precautions, normal or transformed cells can be cultured in sufficient quantity to repair, and to replenish degenerates and wounds.
Cell transplantation bridges the gap between in vitro and in vivo systems, and allows propagation of “new life” in degenerative tissues or organs of the living yet genetically defective or injured body.
Cell fusion transfers all the normal genes within the nucleus like delivering a repair kit to the abnormal cell. It is important to recognize that, for proper installation and future operation, the software packaged in the chromosomes needs other cell organelles as hardware to operate.
Correction of a gene defect occurs spontaneously at the cellular level after cell fusion. The natural integration, regulation and expression of the full complement of over 80,000 normal genes impart the normal phenotypes onto the heterokaryon. Protein(s) or factor(s) that were not produced by the host genome because of the genetic defect are now produced by the donor genome that is normal. Various cofactors derived from expression of the other genes corroborate to restore the normal phenotype.
GENE THERAPY WITH MYOBLASTS
The use of myoblasts as gene transfer vehicles has been researched by this inventor extensively. In mammals, myoblasts are the only cell type which divide extensively, migrate, fuse naturally to form syncytia, lose MHC-1 antigens soon after fusion, and develop to occupy 50% of the body weight in humans. These combined properties render myoblasts ideal for gene transfer.
Natural transduction of normal nuclei ensures orderly replacement of dystrophin and related proteins at the cellular level in DMD. This ideal gene transfer procedure is unique to muscle. After all, only myoblasts can fuse and only muscle fibers are multinucleated in the human body. By harnessing these intrinsic properties, MTT transfers all normal genes to effect genetic repair. Since donor myoblasts also fuse among themselves to form normal fibers in MTT, the muscles benefit from the addition of genetically normal cells as well.
MYOBLAST THERAPY IS THE MEDICINE OF THE FUTURE
Health is the well-being of all body cells. In hereditary or degenerative diseases, sick cells need repairing and dead cells need replacing for health maintenance.
Cell culture is the only way to generate new, live cells that are capable of surviving, developing and functioning in the body after transplantation, replacing degenerated cells that are lost.
Myoblasts are the only cells in the body capable of natural cell fusion. The latter allows the transfer of all of the normal genes into genetically defective cells to effect phenotypic repair through complementation. MTT on DMD is the first human gene therapy demonstrated to be safe and effective. The use of MTT to transfer any other genes and their promoters/enhancers to treat other forms of diseases is underway. Myoblasts are efficient, safe and universal gene transfer vehicles, being endogenous to the body. Since a foreign gene always exerts its effect on a cell, cell therapy will always be the common pathway to health. After all, cels are what life is made of.
DMD: A SAMPLE DISEASE
DMD is a hereditary, degenerative, debilitating, fatal, and undesirable mammalian disease. It is characterized by progressive muscle degeneration and loss of strength. These symptoms begin at 3 years of age or younger and continue throughout the course of the disease. Debilitating and fatal, DMD affects 1 in 3300 live male births, and is the second most common lethal hereditary disease in humans. DMD individuals are typica
Beisner William H.
Heller Ehrman White & McAuliffe LLP
LandOfFree
Automated cell processor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automated cell processor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated cell processor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2515570