Automated bore planning method and apparatus for horizontal...

Boring or penetrating the earth – Automatic control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C175S045000, C033S304000, C702S009000

Reexamination Certificate

active

06749029

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to the field of underground boring and, more particularly, to a method and apparatus for developing a bore plan.
Utility lines for water, electricity, gas, telephone and cable television are often run underground for reasons of safety and aesthetics. In many situations, the underground utilities can be buried in a trench which is then back-filled. Although useful in areas of new construction, the burial of utilities in a trench has certain disadvantages. In areas supporting existing construction, a trench can cause serious disturbance to structures or roadways. Further, there is a high probability that digging a trench may damage previously buried utilities, and that structures or roadways disturbed by digging the trench are rarely restored to their original condition. Also, an open trench poses a danger of injury to workers and passersby.
The general technique of boring a horizontal underground hole has recently been developed in order to overcome the disadvantages described above, as well as others unaddressed when employing conventional trenching techniques. In accordance with such a general horizontal boring technique, also known as microtunnelling, horizontal directional drilling (HDD) or trenchless underground boring, a boring system is situated on the ground surface and drills a hole into the ground at an oblique angle with respect to the ground surface. A drilling fluid is typically flowed through the drill string, over the boring tool, and back up the borehole in order to remove cuttings and dirt.
After the boring tool reaches a desired Depth, the tool is then directed along a substantially horizontal path to create a horizontal borehole. After the desired length of borehole has been obtained, the tool is then directed upwards to break through to the surface. A reamer is then attached to the drill string which is pulled back through the borehole, thus reaming out the borehole to a larger diameter. It is common to attach a utility line or other conduit to the reaming tool so that it is dragged through the borehole along with the reamer.
A common approach to planning a bore involves surveying a bore site and manually creating a bore plan on paper. Utilities and other underground objects are typically located and identified on the bore plan. Using the paper bore plan as a guide, the skilled machine operator attempts to direct the boring implement along the pre-planned boring route. A second operator periodically scans the drilling area to determine the actual location of the boring tool. Deviations between the planned and actual bore paths are resolved manually, the accuracy of which is highly dependent on the skill level of the machine and locator operators.
It can be appreciated that a manual approach to planning a bore and assessing the progress of the actual bore relative to a bore plan is problematic. Parameters such as entry angle, rod and product diameters, reamer diameter, rod bend radius, topography variations, utility diameter and safety clearance radius, grades, and minimum ground cover, for example, are generally not properly accounted for using conventional bore planning approaches. A bore plan that fails to properly accommodate these and other parameters is likely to be inaccurate, which may result in excessive drilling machine/pipe/bit wear and delay in completing the bore.
There exists a need in the excavation industry for an apparatus and methodology for automating the process of planning a bore. There exists a need for a bore planning approach that provides for greater accuracy than is currently attainable using existing approaches. The present invention fulfills these and other needs.
SUMMARY OF THE INVENTION
The present invention is directed to a system and method for electronically developing a bore plan of a bore site for use in connection with an underground boring machine. Electronically developing a bore plan according to the principles of the present invention involves providing topographical information representative of topography of the bore site and providing bore path information representative of an intended bore path for the bore site. The bore path information includes at least two target points through which the intended bore path is to pass. The intended bore path can define a pilot bore path or a backream path. The at least two target points comprise an entry point and an exit point, and each of the target points is defined by at least a distance value, lateral value, and a depth value.
Electronically developing a bore plan further involves generating bore plan data using the topographical and bore path information. The bore plan data comprises data representative of an intended bore defined generally along the intended bore path and with respect to the representative topography of the bore site. Electronically developing a bore plan can also involve providing utility information representative of one or more utilities situated at the bore site, wherein generating the bore plan data can further involve generating the bore plan data using the topographical, bore path, and utility information.
The generated bore plan data can comprise an indication of an entry location at which the intended bore path enters the ground, and an exit location at which the intended bore path exits the ground. The entry point can also define a first target point of a number of target points, and the exit point can define a last target point of a number of target points. In one approach, the entry point can define a first target point at which the intended bore is at a first depth and a first pitch, and the exit point can define a last target point at which the intended bore is at a last depth and a last pitch. In another approach, one or more of the target points can be defined by one or both of a pitch value and an azimuth value.
In accordance with another embodiment, electronically developing a bore plan of a bore site involves providing topographical information representative of topography of the bore site, providing utility information representative of one or more utilities situated at the bore site, and providing bore path information representative of an intended bore path for the bore site, the bore path information comprising a plurality of target points through which the intended bore path is to pass. This approach further involves generating bore plan data using the topographical, utility, and bore path information, wherein the bore plan data is comprises data representative of an intended bore.
The generated bore plan data can comprise, for example, only two target points. For example, the generated bore plan data can comprise an indication of an entry location at which the intended bore path enters the ground, and an exit location at which the intended bore path exits the ground. Generating the bore plan data can further involve computing an exit point representative of a last target point of the plurality of target points and computing an entry point representative of a first target point of the plurality of target points. The plurality of target points can, for example, comprise an entry point at which the intended bore is at a first depth and a first pitch, and an exit point at which the intended bore is at a last depth and a last pitch.
According to another embodiment, electronically developing a bore plan of a bore site involves providing topographical information representative of topography of the bore site, providing bore path information representative of an intended bore path for the bore site, and providing information defining one or more mechanical properties of a boring system. Electronically developing a bore plan further involves generating, using the topographical and bore path information, bore plan data that ensures that limitations associated with the mechanical properties are not violated.
By way of example, the mechanical properties of the boring system can include one or more of drill rod diameter, drill rod length, product diameter, product length, maxi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automated bore planning method and apparatus for horizontal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automated bore planning method and apparatus for horizontal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated bore planning method and apparatus for horizontal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3321238

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.