Automated activation and deactivation of operational data...

Data processing: database and file management or data structures – Database design – Data structure types

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06581069

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to centralized generation of reports which compile and/or summarize operational data from remotely located user-operated electronic devices, for example, imaging devices used for medical diagnosis.
BACKGROUND OF THE INVENTION
Diagnostic imaging systems are ubiquitous in modern health care facilities. Such systems provide invaluable tools for identifying, diagnosing and treating physical conditions and greatly reduce the need for surgical diagnostic intervention. In many instances, final diagnosis and treatment proceed only after an attending physician or radiologist has complemented conventional examinations with detailed images of relevant areas and tissues via one or more imaging modalities.
Currently, a number of modalities exist for medical diagnostic imaging systems. These include computed tomography (CT) systems, x-ray systems (including both conventional and digital or digitized imaging systems), magnetic resonance (MR) systems, positron emission tomography (PET) systems, ultrasound systems, nuclear medicine systems, etc. In many instances, these modalities complement one another and offer the physician a range of techniques for imaging particular types of tissue, organs, physiological systems, etc. Health care institutions often arrange several such imaging systems at a single facility or at multiple facilities, permitting its physicians to draw upon such resources as required by particular patient needs.
Modern medical diagnostic imaging systems typically include circuitry for acquiring image data and for transforming the data into a useable form, which is then processed to create a reconstructed image of features of interest within the patient. The image data acquisition and processing circuitry is referred to as a “scanner” regardless of the modality if physical or electronic scanning occurs as part of the imaging process. The particular components of the system and related circuitry, of course, differ greatly between modalities due to their different physics and data processing requirements. The terms “scanner”, “medical imaging device” and “diagnostic imaging device” will be used interchangeably herein.
Medical diagnostic systems of the type described above are often called upon to produce reliable and understandable images within demanding schedules and over a considerable useful life. To ensure proper operation, the systems are serviced regularly by highly trained personnel who address imaging problems, configure and calibrate the systems, and perform periodic system checks and software updates. Moreover, service offerings have been supplemented in recent years by service centers capable of contacting scanners at subscribing institutions directly without the need for intervention on the part of the institution personnel. Such centralized servicing is intended to maintain the diagnostic systems in good operational order without necessitating the attention of physicians or radiologists, and is often quite transparent to the institution.
In certain centralized servicing systems, a computerized service center will contact a scanner via a network to check system configurations and operational states, to collect data for report generation, and to perform other useful service functions. Such contacts can be made periodically, such as during system “sweeps”, in which a variety of system performance data is collected and stored with historical data for the particular scanner. The data can then be used to evaluate system performance, propose or schedule visits by service personnel, and the like.
While such service techniques have proven extremely valuable in maintaining diagnostic systems, further improvements are still needed. Although the transparency of interactions between scanners and service centers avoids distracting medical personnel with service updates unnecessarily, some degree of interaction between service centers and institutions is highly desirable. In particular, an interactive service system facilitates valuable exchanges of information, including reports of system performance, feedback on particular incidents requiring attention, updates of system licenses, software, imaging protocols, etc. Currently available service systems permit such interactive exchanges. In particular, a platform has been developed that serves as a base for the interactive servicing needs of different modalities. This platform allows a central service center to exchange information on possible service problems with remotely located scanners, and to retrieve information or data log files from scanners for the purpose of servicing those scanners. One known platform provides a uniform interface permitting clinicians and radiologists to operate a variety of scanners in different modalities, and to report service issues for the scanners, via a uniform, intuitive format.
The known integrated user-interactive platform for servicing diagnostic equipment at remote locations may be configured in software, hardware, or firmware at the scanner or may be installed in a central operator's station linking several scanners in a medical facility. The user interface permits service requests to be generated prior to, during or subsequent to examinations executed on the diagnostic equipment. The user interface also permits service messaging, report generation and retrieval, etc. The user interface is preferably configured as a network browser, which also facilitates linking the scanner or the central facility control station to a network such as an intranet or internet. The same user interface may be integrated into scanners of different modalities, thereby further facilitating service requests and the like by operations personnel, without requiring the personnel to become reacquainted with diverse interfaces in a facility.
In particular, the existing user-interactive platform provides the system user with the capability to request scanner utilization reports from a central service center based on the operational history of scanners at a remote facility. In order to provide such utilization reports, it is necessary to regularly collect operational data from these scanners. In accordance with an existing system, a scanner can be programmed to collect its own operational data in computer memory and then proactively transmit that data to a central facility in accordance with a preprogrammed schedule input to the scanner by the central facility only scanners covered by a service contract which provides for data logging and report generation will transmit logged operational data to the central facility. After the central facility has collected and processed the log files of operational data from all scanners covered by contracts, scanner utilization reports can be generated. In particular, a hospital administrator can at any time request, via a wide-area network or the Internet, a utilization report compiling and/or summarizing collected operational data for medical imaging devices (i.e., scanners) under contract at that hospital.
In accordance with the foregoing pre-existing system, a data logging program is stored in each scanner, but is not activated until that scanner is covered by an appropriate service contract. Similarly, when a service contract covering a particular scanner expires, the data logging feature incorporated in that scanner needs to be deactivated. There are several disparate computational systems involved in the collection of operational data from scanners, i.e., the contract system, the connectivity system and the scanners themselves. It is currently a manual process to tie these systems together. In particular, a manual process is currently used to turn on or off the data logging feature on a scanner. In the case of new service contracts, sometimes utilization reporting service is not provided on time due to delays in manually activating scanners. In the case of expired service contracts, utilization reporting service is often provided for free for many months beyond the service contract termination date due to delays in m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automated activation and deactivation of operational data... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automated activation and deactivation of operational data..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated activation and deactivation of operational data... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3136912

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.