Dynamic information storage or retrieval – Information location or remote operator actuated control – Selective addressing of storage medium
Reexamination Certificate
1997-11-13
2001-04-24
Miller, Brian E. (Department: 2153)
Dynamic information storage or retrieval
Information location or remote operator actuated control
Selective addressing of storage medium
Reexamination Certificate
active
06222800
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to a recording device for storage media and a transport device for labeling storage media. In particular the recording device is a batch loaded compact disk copying unit that automatically loads and records a series of recordable disks, and the transport device is a transport unit that transports a disk from a compact disk copying unit to a printer that places a label on the top face of compact disk.
As computers and consumer electronic products have evolved to handle greater capacities of data, the storage medium for recording data or information generated has similarly evolved. The optical disk has become an inexpensive medium on which to record a large volume of data. Originally used in the audio recording industry, the laser disk or modern compact disk has become the medium choice for fixed data storage. While read/write compact disks have been devised, the large majority of compact disks are written once for multiple reading.
In the past, the transfer of data onto compact digital disks was a costly procedure economically feasible only when manufacturing a large quantity of copies. Users with applications that require relatively few copies or require frequent data updates could not reap the benefits of this technology, even though low cost disk readers were readily available. The advent of recordable digital compact disks was intended to allow users to record their own disks and thereby achieve significant savings. Unlike a common compact disk that has been pressed by a mold, a recordable disk has a surface that is etched by a laser contained in the disk recorder. Once etched, the recordable disk is unalterable and is readable indefinitely.
Commercially available disk recorders have enabled users to record individual compact disks. The disk recorder is typically connected to a personal computer having a hard drive on which the information to be transferred is temporarily stored. Ordinary programs permit the copying and transfer of data from the internal hard drive of the computer to the disk recorder, which records the data on the disk. This process is time consuming and requires the attention of a user who must load and unload the recorder after each copying transaction. Where it is desirable to record the same information on multiple disks, the use of an automatic loading device is required to eliminate the constant attention of an operator.
Various systems have been proposed by one of the present inventors and are the subject of separate applications. In application Ser. No. 08/732,940, filed Oct. 17, 1996, entitled, “Programmable Self-operating Caddy-loaded Compact Disk Duplication System,” a device is described for automatically recording on a stack of compact disks contained in protective caddies. Also, in Ser. No. 60/040,422, filed Mar. 13, 1997, entitled “Programmable Self-Operating Compact Disk Duplication System Using Stacked Spindles,” there is described an automatic compact disk duplication system with vertically stacked storage spindles and disk drives.
Where high volume is not a concern, batch loading for a single recorder unit can be accomplished with an automatic loading device. In this manner a series of recordable disks can be recorded without the attention of an operator. This invention relates to the electromechanical means for enhancing a standard commercial recording device with an automatic loading mechanism to enable the copying of a stack of recordable disks.
The automatic compact disk duplication systems described in the applications listed above along with other disk duplication systems currently available significantly lessen the amount of operator supervision during the disk copying process, but none of these disk duplication systems can coordinate the printing of labels or other identifying information onto the top face of each recordable disk immediately before or after the recording process. The automatic placement of a label on the face of a recordable disk eliminates the possibility that a user will mis-identify a recorded disk. The invention of the disk printer transport system relates to the electromechanical means for enhancing most commercial recording devices with a disk labeling feature, allowing users to further automate the disk duplication process while utilizing their current disk duplication equipment, thereby achieving significant cost savings for a relatively small investment.
SUMMARY OF THE INVENTION
The autoload disk copier system of this invention is designed for those operations were a modest number of compact disks are to be recorded. Although the disk copier system is primarily designed for copying recordable data disks, the system can be used for recording compact disks for audio formats and other recordable erasable media. The disk copier system has an autoload copier unit that includes one or more conventional compact disk drive units. The units may be either stacked one on top of another or oriented on the similar plane at right angles. In this manner, two or three additional drive units may be incorporated into the copier unit with minor modification to the housing and mechanical mechanisms described in the specification.
The disk copier system includes a personal computer or controller board that may be incorporated within the housing of the autoload copier unit or maintained separate therefrom. The computer provides the operating program for controlling the disk drive and the various mechanical components utilized to load and unload disks from the disk drive.
The disk drive is a conventional drive having an extendable tray for receipt and removal of a compact disk. The autoload copier unit has a batch loading device that enables a stack of blank disks to be loaded into the copier unit for automatic copying. The batch loading device positions a stack of disks with respect to an autoload separator mechanism which selectively separates and deposits a single disk from the stack onto the disk tray of the drive. The tray is then retracted and the disk drive performs either a read or write operation on the disk. When complete, the tray is extended and an autoretrieve mechanism unloads the disk from the tray, and in the preferred embodiment, deposits the disk onto one of two spindles for good or bad disks, respectively. Alternately, the disk can simply be deposited on a slide for transport to a receiving station.
In the preferred embodiment, disks are supplied to the copier unit on a carrier having a center post with an offset foot. The autoload separator mechanism has a push device to push the lower-most disk from the foot of the post and onto a disk tray arranged below the carrier.
In the preferred embodiment, the autoretrieve mechanism has a shuttle device with a carriage having a pick-up head that moves over a disk that is in the disk tray and retrieves the disk by a pick-up device that engages the disk through the center hole of the disk. The autoretrieve mechanism is displaceable on command of the computer to a desired position.
It is to be understood that with the autoload separator mechanism and autoretrieve mechanism, the autoload copier unit can include a printer for automatic printing of the disk surface utilizing the load mechanism and the retrieve mechanism described. In particular, the disk printer transport system of this invention is designed for use with (1) the autoload disk copier system described in this application; and (2) any disk copier system having a disk access aperture large enough to accommodate the temporary insertion of an autoretrieve mechanism that removes a disk from an open disk tray.
As previously described above, typical disk copier systems have multiple disk drive units vertically stacked, and additionally may have multiple stacks orientated at right angles, thus allowing any disk drive to extend its tray into a central square-shaped vertical region formed by the placement of the stacked disk drive units. This square-shaped vertical region is often known as the “disk bay”. In current commercially available disk copier systems, one si
Drynkin Alexander V.
Hess William M.
Miller David B.
Copy Pro, Inc.
Kupstas Tod
Miller Brian E.
Peterson Richard Esty
LandOfFree
Autoload disk copier system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Autoload disk copier system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Autoload disk copier system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2510883