Autofill system with improved automixing

Foods and beverages: apparatus – Beverage – With gas treating means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C099S275000, C261SDIG007, C366S153100, C139S101000, C139S101000

Reexamination Certificate

active

06260477

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to high volume mixing and dispensing beverages and, more particularly, to a system and a method for improved control of the flow and mixing of a beverage.
Conventional beverage mixing and dispensing systems employ an open intermediary mixing tank for receiving and mixing a beverage concentrate and water to produce a beverage which is drawn from the intermediary tank to a carbonator or dispenser for dispensing. When the amount of the beverage drops in the open tank below a preset level, additional beverage concentrate and water are flowed into the intermediary tank to refill the tank. The intermediary tank is typically large to avoid the need for frequent refilling which interrupts the dispensing operation. The tank must be vented or open to the atmosphere to prevent vacuum. Such an open system is very susceptible to contamination. Moreover, large quantities of the beverage may need to be discarded if the mixing ratio does not meet the requirement. Open systems require frequent, often weekly, sanitization with significant product waste resulting.
When it is desired to provide a carbonated beverage, the carbonator pump of a carbonator pumps the beverage to a carbonator tank, and carbon dioxide is injected into the carbonator tank. The relative proportions of the beverage and the carbon dioxide are maintained within a range to produce a properly carbonated beverage. Typically the carbon dioxide has a pressure that is higher than the pressure of the beverage inside the carbonator tank. The carbonator pump is a flow-through pump that is powered only when necessary to refill the carbonator tank and ensures that the carbon dioxide does not drive the beverage out of the tank due to the pressure differential. In situations where the beverage pressure inside the carbonator tank is approximately equal to or higher than the pressure of the carbon dioxide, however, the flow of the beverage into the carbonator tank using conventional mechanisms will tend to drive out the carbon dioxide so that the proportion of the beverage in the tank will be unacceptably high, and the resulting beverage is either not carbonated or inadequately carbonated.
SUMMARY OF THE INVENTION
The present invention relates to an autofill system for mixing and dispensing beverage with improved control of the mixing and flow of the beverage. The invention provides a closed system for mixing and dispensing the beverage. Real time monitoring of the beverage for consistency and mixing ratio is provided at or near the point of mixing so that real time adjustments can be made when necessary to correct the flow rates of the beverage concentrate and water to achieve the desired mixing. The flow of the beverage out of the mixing device is controlled by a switch such as a solenoid valve. The switch is turned on to allow flow of the beverage out of the mixing device only when the carbonator pump is powered. In a specific embodiment, the solenoid valve is electrically coupled to a transformer which receives power to activate the solenoid valve only when the carbonator pump is turned on. When the carbonator pump is shut down, the power to the transformer is terminated and the solenoid is turned off to stop the flow of the beverage out of the mixing device. The flow control of the beverage out of the mixing device prevents undesirable flow of the beverage and avoids problems such as excess accumulation of beverage in a carbonator tank which fails to meet the required proportions of beverage and carbon dioxide.
In accordance with an aspect of the present invention, a system for preparing a beverage from a beverage concentrate comprises a mixing device having a beverage concentrate inlet for receiving a beverage concentrate, a water inlet for receiving water, and an outlet. The mixing device mixes the beverage concentrate and the water to produce a beverage for dispensing through the outlet. A carbonator has a carbonator inlet coupled with the outlet of the mixing device, and includes a carbonator control. A control unit is coupled with the carbonator control and the mixing device for controlling flow of the beverage from the mixing device to the carbonator in response to the carbonator control.
In one embodiment, the carbonator control comprises a pump for pumping the beverage from the outlet of the mixing device to the carbonator. The control unit allows flow of the beverage from the mixing device to the carbonator when the pump is powered, and stops flow of the beverage from the mixing device to the carbonator when the pump is not powered.
In another embodiment, the carbonator comprises a carbonator tank having a beverage inlet for receiving beverage from the mixing device. The carbonator control comprises a level sensor for measuring liquid level in the carbonator tank. The control unit allows flow of the beverage from the mixing device to the carbonator when the level sensor senses a liquid level below a preset minimum level, and stops flow of the beverage from the mixing device to the carbonator when the level sensor senses a liquid level at or above a preset maximum level.
The mixing device may include a switch which is controllable by the control unit between an ON position to allow flow of the beverage through the outlet and an OFF position to stop flow of the beverage through the outlet. In a specific embodiment, the switch comprises at least one solenoid valve, the control unit comprises a transformer, and the carbonator pump comprises a carbonator pump motor electrically coupled with the transformer. The carbonator pump motor supplies power to the transform to activate the solenoid valve to allow flow of the beverage through the outlet of the mixing device only when the carbonator pump motor is powered. The mixing device includes a static mixing tube. A sampling port for sampling the beverage is provided in a bypass line coupled to a main beverage line between the static mixing tube and the outlet of the mixing device.
In accordance with another aspect of the invention, an apparatus for preparing a beverage from a beverage concentrate comprises a mixing device having a beverage concentrate inlet for receiving a beverage concentrate, a diluter inlet for receiving a diluter, and an outlet. The mixing device mixes the beverage concentrate and the diluter to produce a mixed beverage for dispensing through the outlet. A beverage flow line is disposed downstream of and coupled with the outlet of the mixing device. A pump is coupled with the beverage flow line downstream of the outlet of the mixing device for pumping the beverage from the outlet. A control line is coupled between the mixing device and the pump. A control unit is coupled with the control line. The control unit allows flow of the beverage from the outlet of the mixing device to the pump when the pump is powered and stops flow of the beverage from the outlet of the mixing device to the pump when the pump is not powered. The apparatus desirably includes a sampling port coupled to the mixing device for sampling the mixed beverage and means for adjusting flow rates of the beverage concentrate and diluter into the mixing device to achieve a desired mixing ratio.
In accordance with another aspect of the invention, an apparatus for preparing a beverage from a beverage concentrate comprises a mixing device having a beverage concentrate inlet for receiving a beverage concentrate, a diluter inlet for receiving a diluter, and an outlet. The mixing device mixes the beverage concentrate and the diluter to produce a mixed beverage for dispensing through the outlet. A beverage flow line is disposed downstream of and coupled with the outlet of the mixing device. A carbonator includes a carbonator tank having a beverage inlet coupled with the beverage flow line and a carbonation inlet coupled to a source of carbon dioxide. The carbonator includes a level sensor for measuring liquid level in the carbonator tank. A control line is coupled between the mixing device and the level sensor. A control unit is coupled with the con

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Autofill system with improved automixing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Autofill system with improved automixing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Autofill system with improved automixing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2451737

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.