Autodocking assembly and method

Electrical connectors – With coupling movement-actuating means or retaining means in... – Including compound movement of coupling part

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06224413

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to the field of electronic circuit component cards having edge connectors for mating with corresponding slot connectors, such as peripheral component interconnect (PCI) cards which are pluggable into PCI slot connectors disposed on computer motherboards and backplanes, for example.
2. Background Information
Various electronic circuit component cards, also referred to as electronic cards and card devices herein, having edge connectors for mating with slot connectors on personal computer (PC) system motherboards and/or backplanes, for example, are known. These cards are generally classified by the bus type they are designed for, and a number of standard bus/card/connector types are currently in use. These standard types include ISA (Industry Standard Architecture—{fraction (8/16)} bits) and EISA (Expanded ISA—32 bits), SCSI (Small Computer System Interconnect), PCI (Peripheral Component Interconnect), MCA (Micro Channel Architecture), VLB (VESA Local Bus), AGP (Accelerated Graphics Port), and USB (Universal System Bus), to name just a few.
The card edge connectors typically have a number of relatively closely spaced metal contacts on one or both sides of the card edge, and the corresponding slots similarly have a like number of closely spaced metal contacts therein. When the card edge connector is inserted in the slot connector, the corresponding contacts make electrical connection. Through these contacts and their electrical connection, the card device and the personal computer system communicate data, address and control signals, for example. The card device also generally obtains electrical energy from the personal computer system through two or more of the contacts.
The card edge connectors have a predefined size and, in the case of PCI cards, for example, have key slots which align with corresponding key ridges provided within the slot connectors. These keyed features, as well as the fact that the slots of the slot connectors are closed at ends thereof, help to ensure that the card edge connector contacts align with the correct slot connector contacts when fully inserted. However, these card devices are generally designed with the assumption that they will be inserted by hand by the personal computer owner or technician. During insertion by hand, it is possible that there could be a momentary contact with an adjacent card or other nearby component, or there could be a momentary misalignment of the closely spaced edge contacts, causing a short circuit, for example. (It should be noted that the providing of the keyed features generally adequately prevents any contact misalignment during insertion.) Because of this, such cards are generally installed with the personal computer system turned off, i.e., “powered down.”
The focus of the following discussion will be PCI-based card devices, however, the same factors addressed hold true for other types of card devices. The PCI bus is a synchronous, processor independent, 32- or 64-bit bus that functions similarly to a processor local bus. The PCI bus can be thought of as a buffered intermediate or so-called mezzanine bus, that is, an extension of the processor local bus. It is coupled to the personal computer processor local bus by so-called “bridge” circuitry, but maintains its own separate set of circuits. The original PCI bus specification required a constant speed of 33 MHz, which translates to a transfer rate of 80-120 Mbs in a 32-bit environment, and up to a 264 Mbs transfer rate in a 64-bit environment. The PCI bus operates on 5 volts, 3.3 volts, or both.
PCI and the other so-called local bus technologies, e.g., VESA (Video Electronics Standard Association), were developed to permit personal computers to communicate more quickly with peripheral devices, particularly video cards in the case of VESA where the “V” stands for video. Graphic operating systems and applications, for example, place a high throughput demand on a bus system. The original IBM PC (IBM is a registered trademark of International Business Machine Corporation) had a bus speed of about 1 megabyte per second, the IBM AT about 4 megabytes per second, a typical ISA bus about 8 megabytes to a maximum of 16 megabytes per second, the EISA bus has 32 megabytes per second, the MCA bus 20-40 megabytes per second, the VESA VL-1 has 20-132 megabytes per second, the VESA VL-2 up to 264 megabytes per second, the PCI 1.0 has 80-120 megabytes per second and the PCI 2.0 up to 264 megabytes per second. The VESA and PCI buses are called “local bus” technologies because the motherboard bus is bypassed, and the peripheral connected to the processor “local” bus, through the VESA circuitry or the PCI bridge circuitry. This permits peripherals to be run at the full CPU clock speed, over the full CPU 32- or 64-bit data path, with readily apparent benefits.
The PCI standard bus was also developed as a way to integrate peripherals in general onto personal computer motherboards. PCI buses have gained favor over other buses due in part to the fewer control lines used. A PCI bus uses 32 conductors to carry both the address and data lines, while a VESA VL-1 bus, for example, uses up to 64 (32 data and 32 address). This permits PCI cards to be, in general, smaller than other types of local bus cards.
For these reasons, and others, PCI buses, cards and card slots have become widespread in the personal computer (PC) market, and there are now a plethora of PCI-based card devices available. Until recently, personal computer buses and card devices, e.g., PCI buses and card devices, have not been used in mid-range to high-end, e.g., “mainframe,” computer systems. Therefore, until recently, only the personal computer user has had the advantage of the wide range of available peripheral component interconnect (PCI) card devices, and the like. However, as personal computers and their peripherals have reached higher and higher performance levels, and have become more and more varied, their integration into mid-range to high-end computer systems has been given serious consideration. It has now been recognized that the users of mid-range to high-end computer systems could benefit from the variety, versatility and availability of PCI card devices, and the like.
Therefore, a need existed for a way to accommodate these PCI card devices, and the like, in mid-range to high-end computers. Mid-range and high-end computer systems are now being shipped with PCI card devices. One example of a mid-range computer is the IBM AS/400 series (AS/400 is a registered trademark of International Business Machine Corporation).
While providing a PCI bus and card connector on a mid-range to high-end computer system motherboard or backplane, for example, to meet the above-identified need may seem to be relatively straight forward, and admittedly, can be accomplished with sufficient effort, there are a number of related technical issues which have to be addressed in doing so. One of these issues relates to common differences in the way personal computers and mid-range to high-end computers are put to use, as will be explained.
PCI and similar electronic card devices generally derive power from the personal computer motherboard or backplane through the card slot they are plugged into. Further, it is generally assumed in the design of the cards that they will be plugged in by hand when the power to the personal computer is off, to avoid the possibility of damage to components on the cards and/or motherboard, should there be a momentary contact with an adjacent card or component, or a misalignment of the closely spaced contacts, during insertion causing a short circuit or connection of power to the wrong contact, for example, as mentioned earlier.
This requirement that power be off during insertion and/or extraction of the card is inconvenient but generally tolerable when the card devices are used in the typical desktop personal computer. Because PCI and other types of card devices designed for personal computers are not designed to be able to be plugged

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Autodocking assembly and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Autodocking assembly and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Autodocking assembly and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2473834

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.