Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Utility Patent
1998-12-08
2001-01-02
Schaetzle, Kennedy (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
C607S028000
Utility Patent
active
06169921
ABSTRACT:
BACKGROUND OF THE INVENTION
I. Field of the Invention
The present invention relates generally to the field of cardiac rhythm management devices, including cardioverter defibrillators. More specifically, the present invention relates to a cardioverter defibrillator system that automatically determines whether a pacing stimulus in the atrium or ventricle results in heart capture or contraction. The cardiac pacing/defibrillation system includes a pacing/sensing circuit that attenuates polarization voltages or “afterpotentials” which develop at the heart tissue/electrode interface following the delivery of a stimulus to the heart tissue. The pacing/sensing circuit of the present invention may utilize the implantable cardioverter defibrillator leads to sense a response evoked by a pacing stimulus to the atrium or ventricle. Thus, the present invention allows accurate detection of an evoked response of the heart, to thereby determine whether pacing stimulus to the atrium or ventricle by an implantable cardioverter defibrillator results in capture.
II. Discussion of the Prior Art
In the past, implantable cardioverter defibrillators have been utilized to sense for electrical impulses in the atrium and both pace and sense in the ventricle. Additionally the ventricular lead has been utilized when the cardioverter defibrillator is functioning in the defibrillation mode. The conventional cardiac pacing/defibrillation device includes an electronic pulse generator for generating pacing pulses, which is typically electrically coupled to one or more electrode lead arrangements positioned adjacent or within a preselected heart chamber for delivering electrical stimulus thereto. The conventional cardioverter defibrillator does not pace in both the atrium and ventricle and thereafter sense a response evoked by the respective pacing stimulus. Thus, there is a need for a cardioverter defibrillator that may provide a pacing stimulus in both the atrium and ventricle and thereafter sense a response evoked by the respective pacing stimulus.
Regardless of the type of device employed to restore the heart's natural rhythm (ie: ventricular pacing, atrial pacing, or dual chamber pacing in both the atrium and ventricle), each type operates to stimulate excitable heart tissue cells adjacent to the selected pacing electrode, which may or may not result in capture. Myocardial response to stimulation or “capture” is a function of the positive and negative charges found in each myocardial cell within the heart. More specifically, the selective permeability of each myocardial cell works to retain potassium and exclude sodium such that, when the cell is at rest, the concentration of sodium ions outside of the cell membrane is significantly greater than the concentration of sodium ions inside the cell membrane, while the concentration of potassium ions outside the cell membrane is significantly less than the concentration of potassium ions inside the cell membrane. The selective permeability of each myocardial cell also retains other negative particles within the cell membrane such that the inside of the cell membrane is negatively charged with respect to the outside when the cell is at rest. When a stimulus is applied to the cell membrane, the selective permeability of the cell membrane is disturbed and it can no longer block the inflow of sodium ions from outside the cell membrane. The inflow of sodium ions at the stimulation site causes the adjacent portions of the cell membrane to lose its selective permeability, thereby causing a chain reaction across the cell membrane until the cell interior is flooded with sodium ions. This process, referred to as depolarization, causes the myocardial cell to have a net positive charge due to the inflow of sodium ions. The electrical depolarization of the cell interior causes a mechanical contraction or shortening of the myofibril of the cell. The syncytial structure of the myocardium will cause the depolarization originating in any one cell to radiate through the entire mass of the heart muscle so that all cells are stimulated for effective pumping. Following heart contraction or systole, the selective permeability of the cell membrane returns and sodium is pumped out until the cell is repolarized with a negative charge within the cell membrane. This causes the cell membrane to relax and return to the fully extended state, referred to as diastole. In a normal heart, the sino-atrial (SA) node initiates the myocardial stimulation of the atrium. The SA node comprises a bundle of unique cells disposed within the roof of the right atrium. Each cell membrane of the SA node has a characteristic tendency to leak ions gradually over time such that the cell membrane periodically breaks down and allows an inflow of sodium ions, thereby causing the SA node cells to depolarize. The SA node cells are in communication with the surrounding atrial muscle cells such that the depolarization of the SA node cells causes the adjacent atrial muscle cells to depolarize. This results in atrial systole wherein the atria contract to empty blood into the ventricles. The atrial depolarization from the SA node is detected by the atrioventricular (AV) node which, in turn, communicates the depolarization impulse into the ventricles via the Bundle of His and Purkinje fibers following a brief conduction delay. In this fashion, ventricular systole lags behind atrial systole such that the blood from the ventricles pumps through the body and lungs after being filled by the atria. Atrial and ventricular diastole follow wherein the myocardium is re-polarized and the heart muscle relaxed in preparation for the next cardiac cycle. It is when this system fails or functions abnormally that a pacing device may be needed to deliver an electronic pacing stimulus for selectively depolarizing the myocardium of the heart so as to maintain proper heart rate and synchronization of the filling and contraction of the atrial and ventricular chambers of the heart. Further, at times a defibrillation of the heart may occur which requires significant electrical stimulus to the heart to return the heart to a normal rhythm.
The success of a pacing stimulus in depolarizing or “capturing” the selected chamber of the heart hinges on whether the current of the pacing stimulus as delivered to the myocardium exceeds a threshold value. This threshold value, referred to as the capture threshold, is related to the electrical field intensity required to alter the permeability of the myocardial cells to thereby initiate cell depolarization. If the local electrical field associated with the pacing stimulus does not exceed the capture threshold, then the permeability of the myocardial cells will not be altered enough and thus no depolarization will result. If, on the other hand, the local electrical field associated with the pacing stimulus exceeds the capture threshold, then the permeability of the myocardial cells will be altered sufficiently such that depolarization will result.
Changes in the capture threshold may be detected by monitoring the efficacy of stimulating pulses at a given energy level. If capture does not occur at a particular stimulation energy level which previously was adequate to effect capture, then it can be surmised that the capture threshold has increased and that the stimulation energy should be increased. On the other hand, if capture occurs consistently at a particular stimulation energy level over a relatively large number of successive stimulation cycles, then it is possible that the capture threshold has decreased such that the stimulation energy is being delivered at level higher than necessary to effect capture.
The ability of a pacing device to detect capture is desirable in that delivering stimulation pulses having energy far in excess of the patient's capture threshold is wasteful of the limited power supply. In order to minimize current drain on the power supply, it is desirable to automatically adjust the device such that the amount of stimulation energy delivered to the myocardium is maintained a
KenKnight Bruce H.
Zhang Geng
Zhu Qingsheng
Cardiac Pacemakers Inc.
Nikolai Mersereau & Dietz, P.A.
Schaetzle Kennedy
LandOfFree
Autocapture determination for an implantable cardioverter... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Autocapture determination for an implantable cardioverter..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Autocapture determination for an implantable cardioverter... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2552594