Auto adjusting well control system and method

Wells – Processes – With indicating – testing – measuring or locating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S372000, C166S263000

Reexamination Certificate

active

06595287

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to optimizing production of hydrocarbon wells. More particularly, the invention relates to an auto-adjusting well control system for the operation of the well. More particularly still, the invention relates to optimizing the production of a hydrocarbon well intermitted by a plunger lift system or a gas lift system.
2. Description of the Related Art
The production of fluid hydrocarbons from wells involves technologies that vary depending upon the characteristics of the well. While some wells are capable of producing under naturally induced reservoir pressures, more common are wells, which employ some form of an artificial lift production procedure. During the life of any producing well, the natural reservoir pressure decreases as gases and liquids are removed from the formation. As the natural downhole pressure of a well decreases, the wellbore tends to fill up with liquids, such as oil and water. In a gas well, the accumulated fluids block the flow of the formation gas into the borehole and reduce the output production from the well. To combat this condition, artificial lift techniques are used to periodically remove the accumulated liquids from these wells. The artificial lift techniques may include plunger lift devices and gas lift devices.
Plunger lift production systems include the use of a small cylindrical plunger which travels through tubing extending from a location adjacent the producing formation in the borehole to surface equipment located at the open end of the borehole. In general, fluids which collect in the borehole and inhibit the flow of fluids out of the formation and into the well bore, are collected in the tubing. Periodically, the end of the tubing located at the surface is opened via a valve and the accumulated reservoir pressure is sufficient to force the plunger up the tubing. The plunger carries with it to the surface a load of accumulated fluids which are ejected out the top of the well. In the case of an oil well, the ejected fluids are collected as the production flow of the well. In the case of a gas well, the ejected fluids are simply disposed of, thereby allowing gas to flow more freely from the formation into the well bore and be delivered into a gas distribution system known as a sales line at the surface. The production system is operated so that after the flow of gas from the well has again become restricted due to the further accumulation of fluid downhole, the valve is closed so that the plunger falls back down the tubing. Thereafter, the plunger is ready to lift another load of fluids to the surface upon the re-opening of the valve.
A gas lift production system is another type of artificial lift system used to increase a well's performance. The gas lift production system generally includes a valve system for controlling the injection of pressurized gas from a source external to the well, such as a compressor, into the borehole. The increased pressure from the injected gas forces accumulated formation fluid up a central tubing extending along the borehole to remove the fluids as production flow or to clear the fluids and restore the free flow of gas from the formation into the well. The gas lift production system may be combined with the plunger lift system to increase efficiency and combat problems associated with liquid fall back.
The use of artificial lift systems results in the cyclical production of the well. This process, also generally termed as “intermitting,” involves cycling the system between an on-cycle and an off-cycle. During the off-cycle, the well is “shut-in” and not productive. Thus, it is desirable to maintain the well in the on-cycle for as long as possible in order to fully realize the well's production capacity.
Historically, the intermitting process is controlled by pre-selected time periods. The timing technique provides for cycling the well between on and off cycles for a predetermined period of time. Deriving the time interval of these cycles has always been difficult because production parameters considered for this task are different in every well and the parameters associated with a single well change over time. For instance, as the production parameters change, a plunger lift system operating on a short timed cycle may lead to an excessive quantity of liquids within the tubing string, a condition generally referred to as a “loading up” of the well. This condition usually occurs when the system initiates the on-cycle and attempts to raise the plunger to the surface before a sufficient pressure differential has developed. Without sufficient pressure to bring it to the surface, the plunger falls back to the bottom of the wellbore without clearing the fluid thereabove. Thereafter, the cycle starts over and more fluids collect above the plunger. By the time the system initiates the on-cycle again, too much fluid has accumulated above the plunger and the pressure in the well is no longer able to raise the plunger. This condition causes the well to shut-in and represents a failure that may be quite expensive to correct.
In contrast, a lift system that operates on a relatively long timed cycle may result in waste of production capacity. The longer cycle reduces the number of trips the plunger goes to the surface. Because production is directly related to the plunger trips, production also decrease when the plunger trips decrease. Thus, it is desirable to allow the plunger to remain at the bottom only long enough to develop sufficient pressure differential to raise the plunger to the surface.
Improvements to the timing technique include changing the predetermined time period in response to the well's performance. For example, U.S. Pat. No. 4,921,048, incorporated herein by reference, discloses providing an electronic controller which detects the arrival of a plunger at the well head and monitors the time required for the plunger to make each particular round trip to the surface. The controller periodically changes the time during which the well is shut in to maximize production from the well. Similarly, in U.S. Pat. No. 5,146,991, incorporated herein by reference, the speed at which the plunger arrives at the well head is monitored. Based on the speed detected, changes may be made to the off-cycle time to optimize well production.
The forgoing arrangements, while representing an improvement in operating plunger lift wells, still fail to take into account some variables that change during the short term operation of a well. For example, the successful operation of the plunger lift well requires the on-cycle to begin when an ideal pressure differential exists between the casing pressure and the sales line pressure. However, the above optimization schemes operate solely on set time intervals and not directly upon a pressure differential. Therefore, the controller may initiate the on-cycle before the optimal pressure differential has developed. Alternatively, the controller may prematurely end the on-cycle even though production gas flow is still viable. Furthermore, sales lines pressure fluctuations affect the optimal time to commence the on cycle. A fluctuating sales line pressure will cause a change in the effective pressure available to lift liquid out of the well. Simple self-adjusting timed cycle does not take this variable into account when adjusting the length of the cycle.
There is a need therefore, for a well control apparatus and method that uses an automated controller to monitor and adjust well components based upon a variety of factors other than time. There is a further need for an automated controller that directly utilizes variables including the sales line pressure and fluctuations thereof. There is a further need for methods and apparatus for automated control of a plunger lift well whereby operating efficiency over time can be measured and adjustments made based upon a variety of factors, including the flow rate of gas from the well over some period of time.
SUMMARY OF THE INVENTION
The present i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Auto adjusting well control system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Auto adjusting well control system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Auto adjusting well control system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3067055

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.