Image analysis – Applications – Personnel identification
Reexamination Certificate
1999-08-19
2004-06-01
Patel, Jayanti K. (Department: 2625)
Image analysis
Applications
Personnel identification
C382S210000, C382S278000, C356S071000, C359S011000, C359S561000, C359S577000, C369S112010
Reexamination Certificate
active
06744909
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a system for determining whether a person or thing is authentic and more particularly to an authentication system where an input is compared against a reference by an optical correlator to determine whether the input is authentic.
BACKGROUND OF THE INVENTION
Counterfeiting of money, banknotes, stock certificates, bond certificates, debit cards, credit cards, identification cards, social security cards, health insurance cards, immigration documents, transit passes, visas, auto parts, aircraft components, software, computer chips, consumer goods, to name simply a few, cost individuals, businesses, organizations, and countries billions of dollars each year. Similarly, fraud committed by people using a fake identity or the identity of another has become increasingly costly and burdensome to society.
Many technologies have been developed in response to such counterfeiting and fraud. Examples of such technologies include bar codes, magnetic strips encoded with authentication information, electronic “smart” cards having embedded integrated circuits that store authentication information, laser cards, and holograms. However, bar codes can easily be scanned and replicated using even the most rudimentary scanning and printing equipment. While more secure, magnetic strip readers and encoders are readily available and magnetic strip controls can be easily forged.
While “smart” cards are very sophisticated, their technology can also be copied. For example, their authentication information is an electronic key contained within the card that can always be broken because these cards are based on standard microcontrollers, typically of 8-bit construction, that can be reprogrammed. In addition, generic reprogrammable cards are widely available and can be used to mimic the performance of any “smart” card.
Laser cards suffer from similar, if not worse, drawbacks. This is because laser cards rely on technology virtually identical to the technology used to make compact discs. Thus, a laser can be used to scan the encoded surface of the card to record the key and any other authentication information that later can be easily replicated on blank laser cards.
Holograms on labels are affixed to goods, cards, tags, and other articles to provide a visual indication of authenticity. For example, holograms are commonly applied to credit cards and clothing tags so that a merchant will know by looking at the hologram that a card or article of clothing used in a purchase is not counterfeit.
Unfortunately, modern technology has rendered holograms relatively easy to copy and mass produce primarily because holograms possess limited information and are comprised of embossed surface structures. The use of redundant information dramatically decreases the complexity and security of a hologram because it decreases the amount of information stored. This is because thermal embossing techniques used to produce holograms limit the depth of their structure essentially to the surface of the label. Such thermal embossing techniques cannot produce a much more sophisticated hologram because the label material is made of many different moieties and thermal distortion during embossing limits the depth of the structure that can be embossed essentially to the surface. As a result, digital scanners and holographic copying machines can be used to scan a hologram and mass produce it rendering its security effectively meaningless. Also, the holograph embossed into the label can be hardened and then used as a pseudomaster for use in duplicating the hologram in a standard holographic copier.
Finally, since authentication of holograms is done visually, there is no statistically reliable method of verifying its authenticity. As a result, even counterfeit holograms of poor quality may pass visual inspection by a merchant. As a result of these many drawbacks it is obvious why holograms have become less and less useful as a deterrent to counterfeiting.
What is needed is a method of authentication that cannot be easily copied or replicated by a counterfeiter. What is preferably needed is an authentication method that is impossible to copy or replicate. What is also needed is a label or applique' that can be replicated with high aspect two-dimensional or volume surface structures that can extend below its surface so as to more securely store authentication information. What is still further needed is a label or applique' that masks the authentication information to make it difficult, if not impossible, to copy. What is also needed is a label or applique' having these characteristics that is read by a reader that positively verifies its authenticity. What is still also needed is such a label or applique' that can record either or both key authentication information and biometric authentication information.
SUMMARY OF THE INVENTION
An authentication system and method using an input and a reference each having a pattern made up of a plurality of pairs of phase structures that each have a size smaller than six microns and can have a size smaller than about one micron so as to make the input and reference difficult, if not virtually impossible, to copy. Either the input or the reference, or both, are comprised of phase volume masks that have the structures phase encoded or replicated therein. The authentication system includes an optical correlator that is coupled by an energy recording device to a computer that preferably includes a digital signal processing engine made up of one or more processors.
The pattern is a random pattern that preferably is a stochastic random pattern. The pattern can also include a predetermined pattern, such as a biometric pattern, that is convolved or otherwise integrated with the random pattern to scramble and hide the predetermined pattern and produce a phase convolved volume mask. Preferably, the mask can be constructed such that the pattern, whether phase convolved or not, is invisible or substantially invisible to the naked eye.
The mask preferably is of laminate construction such that the phase structures a covered by are protective filler that also impedes the transmission of short wavelength radiation, particularly X-ray radiation, to make the mask more secure. A protective layer of a relatively hard material preferably is disposed between the filler and each of the structures and serves to further protect the structures while being capable of making them optically distinct. Where the mask is for a transmission-mode correlator, the protective layer is transparent. Where the mask is for a reflective-mode correlator, the protective layer is opaque and can even be reflective.
The mask can be replicated using a master or a submaster made from the master. The master is made using a recording medium that preferably is a photosensitive material. Light from a light source, preferably a laser, is directed through an aperture containing the master pattern, such as a diffuser or another mask, onto the recording medium. To produce such small phase structures, the size of the aperture is selected to be as small as possible, preferably no more than a few millimeters, relative to the surface area of the recording medium and the master pattern is spaced a distance from the recording medium. By this novel recording arrangement, a diffuser or another mask having phase structures larger than six microns and having an aspect ratio less than 1:1 can be used to record a master having a pattern of phase structures in the recording medium that can be each smaller than six microns and can have an aspect ratio (AR) greater than 1:1, typically greater than about 2:1 and preferably greater than 10:1 or more. Preferably, each structure can have an AR greater than the above recited values and in any given phase volume mask input or reference, at least a plurality of pairs of structures have an AR greater than 1:1.
Where the mask is a phase convolved mask, the recording arrangement is similar with the exception that another mask containing the predetermined pattern,
Jannson Joanna L.
Jannson Tomasz P.
Kostrzewski Andrew A.
Savant Gajendra D.
Chawan Sheela
Patel Jayanti K.
Physical Optics Corporation
Tachner Leonard
LandOfFree
Authentication system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Authentication system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Authentication system and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3335256