Augmented reality vision systems which derive image...

Computer graphics processing and selective visual display system – Computer graphics processing – Three-dimension

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C348S143000

Reexamination Certificate

active

06278461

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention is generally concerned with communication between one or more vision systems and specifically concerned with presentation of augmented images in a first vision system based partially on information derived from a second vision system.
Certain vision system devices have been provided to aid in the interpretation of a scene being addressed by a user of the vision system. Information relating to the scenes being addressed is somehow “known” to the system. This information is generally used to augment the user's view of the real scene.
For example, in U.S. Pat. No. 2,994,971, by Meisenheimer et al, a starmap is painted onto a clear substrate. When the substrate is placed at arm's length into the line-of-sight of a user observing astronomical scenes, the painted starmap can be viewed simultaneously with the scene. Certain features of the real scene may be invisible; for example the imaginary lines which connect stars to form a constellation. As a prepared starmap may effectively represent those lines, it is useful to view the real scene in combination with the starmap.
Since the information painted onto the substrate is particular to a certain scene, we say the device has “prior knowledge” of which scene is to be addressed by the device. For the example at hand, a transparent substrate is prepared with starmap information which relates to a certain constellation. Therefore, the device is ineffective for viewing scenes other than the particular scene for which it has been designed.
It is also important to point out that this system superimposes the two images onto a single optical path. A viewer's line of sight defines the optical path and the substrate serves as an optical combiner to combine the image of the real scene at one plane (optical infinity) with the image of the starmap at a second plane.
A second example, U.S. Pat. No. 5,311,203 by Norton, is much more versatile. The device determines which scene is being addressed by the vision system and recalls from a computer previously recorded image information relating thereto. In this way, data relating to various scenes can be played onto the device in accordance with the different scenes which may be addressed by the device.
As in the prior example, the device relies on prerecorded information or prior knowledge of the scenes to be viewed. The system's designer must first prepare images which relate to those scene expected to be addressed by the system. If the system addresses an unknown scene, the computer has no facility for generating images to be superimposed with the real scenes.
Similarly with respect to the previous example, the device of Norton combines two optical paths with contain image information from two sources. Norton optically combines information from the real scene and information from a computer generated image.
Both of the devices described above superimpose the recorded information with information of the real scene via optical combiner schemes. Common head-up displays HUD and helmet mounted type displays HMD also rely on optical combiners to join image information generated by a computer to augment a scene being viewed. In HUDs and HMDs, information generated by a computer, for example the extent of a runway, is based on what is known to be within a particular scene being addressed by the system. The system's computer must possess knowledge of physical details of a runway to use the vision system to view that runway. An example of this system is nicely illustrated in a paper by Burgess, et al, “Synthetic Vision—A View in the Fog” IEEE Aerospace and Electronic Systems Magazine, vol. 8, Issue 3, March 93, pp. 6-13.
A vision system developed previously by the present inventors which is the subject of the patent application identified above and which is the parent application to this application, identifies a scene based on position and attitude measurements to determine which scene is being addressed. The system then recalls information from a computer and forms a composite image to be displayed to a user. In contrast to other vision systems, the composite image is formed in the electrical domain compared to the optical domain. Operating on image information in a digital electronic domain provides certain advantages over manipulation of optical beams when considering the functions of these vision systems.
Each of the vision systems taught previously rely on having prior knowledge or stored information of scenes being addressed and uses that information to present an augmented image of the scene. Apparatus of the present invention may use stored information but it also uses information collected in real-time from remotely located cooperating vision systems. While the systems and inventions of the prior art are designed to achieve particular goals and objectives, some of those being no less than remarkable, these inventions have limitations which prevent their use in new ways now possible. These prior art inventions are not used and cannot be used to realize the advantages and objectives of the present invention.
SUMMARY OF THE INVENTION
Comes now, John, Thomas and Peter Ellenby with an invention of an apparatus including devices for and methods of augmenting images of real scenes wherein information used to augment the real scene is derived from a plurality of vision systems in communication with each other. It is a primary function of these apparatus and methods to provide augmented images of real scenes based on information received in real time from a plurality of vision systems. It is a contrast to prior art methods and devices that those systems do not share information with other similar vision systems. A fundamental difference between vision systems of the instant invention and those of the art can be found when considering its communication with other vision systems having different perspectives of a commonly addressed scene.
As a plurality of viewers simultaneously address a single scene from different perspectives (i.e. from different points-of-view), there may be information which is readily available to a first perspective but not readily available to a second perspective. If a plurality of vision systems used to view the scene are in communication with one another, they may be arranged to share image information such that features of the scene which were previously unavailable from any particular point of view then become available via that communication with the other vision system which may supply image information otherwise not available. An image of a scene as viewed from a particular perspective can be operated on by a translation of perspective to result in image information which is useful to a vision system having a different perspective. A first vision system, addressing the same scene from a different perspective can then provide presentation of a composite image of the scene in the natural perspective of that vision system. Images displayed at the first perspective are comprised of image information from two sources: 1) image information gathered normally (i.e. photonically and recall from a database) from the first vision system and 2) image information gathered at the second vision system, operated on by a translation of perspective, and transmitted from the second vision system to the first. The composite image could then have content which would be otherwise impossible to obtain in simple vision systems addressing the scene from that first perspective.
It is a primary object of the invention to provide an apparatus having a plurality of vision systems each being dynamic in both position and attitude and in communication with each other. Further each systems position and attitude is independent of the other. It is an object of the invention to provide communication between a plurality of vision systems. It is a further object to augment an image of a first vision system based on information received from a second vision system. It still further an object to provide a first vision system having certain perspective

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Augmented reality vision systems which derive image... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Augmented reality vision systems which derive image..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Augmented reality vision systems which derive image... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2454164

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.