Computer graphics processing and selective visual display system – Computer graphics processing – Animation
Reexamination Certificate
1997-04-18
2001-11-20
Amsbury, Wayne (Department: 2171)
Computer graphics processing and selective visual display system
Computer graphics processing
Animation
C707S793000, C707S793000, C345S475000, C725S109000, C725S110000
Reexamination Certificate
active
06320588
ABSTRACT:
BACKGROUND OF THE INVENTION
Video communications has evolved over the years from a simple video telephone concept to a sophisticated network for allowing multiple users to participate in a video teleconference. For full featured video teleconferencing, users require both an audio communications path and a real time visual communication path synchronized to the audio path. Furthermore, it is desirable to support full color video and telephone quality audio. Video teleconferencing capabilities are limited mainly by the bandwidth of the transmission medium connecting the teleconferencing terminals.
Many computer workstations used in the office or laboratory environment today are connected with other workstations, file servers, or other resources over high-speed local area networks. Local area networks, in turn are often connected together through high-speed gateways which connect workstations which may be distributed over a wide geographic area. Network wide protocols allow workstations to exchange packets of data at high rates of speed and reliability. Fixed bandwidth digital and analog video channels have been combined with computer networks to implement some video teleconferencing features. These include high bandwidth CATV/FDM type analog channels and fixed allocation TDM data channels for the video data.
SUMMARY OF THE INVENTION
Workstations today have obtained unprecedented computational power and utility. The powerful RISC type CPUs and fast, high resolution graphical displays have made possible multimedia workstations which integrate live audio and video into the programming environment. Graphical User Interface operating systems (GUI) have allowed effective integration of audio and video into application programming.
The present invention provides means for storing and retrieving synchronized audio/video “filmclips” to and from a data file of a multimedia computer workstation. The file storage apparatus and protocol of this invention provides for the storage and retrieval of high quality synchronized video and audio data in a format which is compatible with the video teleconferencing and messages of this invention. The invention uses the teleconferencing protocol of this disclosure to store an audio/video “filmclip” file similar to the way the audio and video teleconference data is sent across a network to a remote workstation during a teleconference. The teleconferencing protocol is also used to replay the audio/video “filmclip” file similar to the way the audio and video teleconference data is received across a network from a remote workstation. Advantageously, the audio and video is reconstructed from the “filmclip” file as it is serially read out of the file, so all the data in the file need not be present in the working memory of the computer before playback can occur. Timing information is embedded into the data stored in the file and provides for easy synchronization of the reconstructed audio and video. The present invention also features a video teleconferencing “answering machine” which allows a user to leave an audio/video “filmclip” message on another workstation for later playback of the message by the user of the other workstation.
In general, in one aspect, the invention features a method and apparatus for storing and retrieving audio and video data in a file accessible by a multimedia computer workstation. The computer workstations include a storage means for a workstation to store audio and video data as digital data packets to the data file, and retrieval means for the workstation to retrieve audio and video data from the data file. The data file is accessible using, for instance, a TCP/IP protocol socket.
In preferred embodiments, the storage means and retrieval means each include a software process executing on the workstation. The storage process formats and stores audio and video data to the data file as data packets, and the retrieval process retrieves the data packets from the data file and reconstructs the audio and video data stored by the storage process for audible and visual reproduction, respectively. The video data is presented as an image on the display of the workstation, while the audio data is sent to either amplified speakers or headphones.
In preferred embodiments, the storage means includes an audio storage means for storing an audio data stream from the workstation to the data file such that the audio data can be retrieved from the data file and reconstructed by the workstation into a continuous audio signal. The storage means also includes video storage means for storing video data from the workstation to the data file such that each frame of video data stored to the data file is inserted into the audio data stream also stored in the data file by the workstation without affecting the continuity of the audio signal retrieved from the data file and reconstructed by the workstation.
In still other preferred embodiments, timing information is attached to each frame of video data stored to the file. The timing information indicates a point in the continuous audio data stream which corresponds in time to the frame of video data. The retrieval means includes a synchronizer for displaying a frame of video data, retrieved from the data file, on the display of the workstation when the point in the audio data stream, retrieved from the data file, corresponding to the timing information of the retrieved video frame is audibly reproduced by the workstation. The synchronizer counts the amount of audio data retrieved in the continuous audio stream and compares the count to the timing information stored along with the most recently retrieved video frame to determine when to display the frame.
In general, in another aspect, the invention features a multimedia computer workstation, such as a RISC workstation or IBM PC, having audio/video “filmclip” storage and retrieval capabilities. The multimedia workstation of this invention includes a video source for providing sequential frames of digitized video data. An audio source provides a digitized audio data stream that represents a continuous audio signal synchronized to the sequential frames of digitized video data. Storage means provides for storing the audio and video data to a data file such that each frame of video data stored to the data file is sequentially inserted into the audio data stream without affecting the continuity of the audio signal represented by the audio data stream. Retrieval means provides for retrieving the audio data stream and the sequential frames of video data from the data file. Audio reproduction means provide for audibly reproducing the retrieved audio data stream into a continuous audio signal. Display means provide for displaying the retrieved sequential frames of video data on the display of the workstation synchronized to the reproduced audio signal.
In preferred embodiments, the video source includes a video camera, a video tape recorder, and/or a video laser disk player providing sequential frames of analog video. A video frame grabber captures, digitizes, and stores each frame of analog video. A video compressor may compress the video data using JPEG or MPEG compression. The audio source includes a microphone for live audio, or pre-recorded audio corresponding to frames of pre-recorded video, from for instance a video tape recorder or laser disk. An audio digitizer digitizes and stores the audio using mu-law compression.
In general, in yet another aspect, the invention features a multimedia “filmclip” message storage apparatus for a video teleconferencing workstation. The message storage apparatus includes a receiver for receiving an audio and video “filmclip” message from a remote source across a digital data network as digital data packets. The receiver stores the received audio and video data packets to a “filmclip” data file accessible by the workstation. Retrieval means provide for retrieving the audio and video “filmclip” message from the data file.
Preferred embodiments of the message apparatus include means for informing a user of the workstation that an
Palmer Larry G.
Palmer Ricky S.
Amsbury Wayne
Compaq Computer Corporation
Hamilton Brook Smith & Reynolds P.C.
Jung David
LandOfFree
Audio/video storage and retrieval for multimedia workstations does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Audio/video storage and retrieval for multimedia workstations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Audio/video storage and retrieval for multimedia workstations will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2604425