Audio interface for satellite user terminals

Telephonic communications – Substation or terminal circuitry – Conversion of signal form

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S388030, C379S392000, C379S397000, C379S340000, C379S027010, C379S395000, C455S554100, C455S555000, C455S420000

Reexamination Certificate

active

06731748

ABSTRACT:

BACKGROUND OF THE INVENTION
I. Field of the Invention
The present invention relates generally to satellite communication systems, and more particularly, to an apparatus, system, and method for providing an audio interface between multiple deskset phones and a radio transceiver unit.
II. Description of the Related Art
A variety of multiple access communication systems and techniques have been developed for transferring information among a large number of system users. However, spread spectrum modulation techniques, such as code division multiple access (CDMA) spread spectrum techniques, provide significant advantages over other modulation schemes, especially when providing service for a large number of communication system users. The use of CDMA techniques in multiple access communication systems is disclosed in U.S. Pat. No. 4,901,307, which issued Feb. 13, 1990, entitled Spread Spectrum Multiple Access Communication. System Using Satellite Or Terrestrial Repeaters, and U.S. Pat. 5,691,974, which issued Nov. 25, 1997, entitled Method And Apparatus For Using Full Spectrum Transmitted Power In A Spread Spectrum Communication System For Tracking Individual Recipient Phase Time And Energy, both of which are assigned to the assignee of the present invention, and incorporated herein by reference. CDMA uses a preselected pseudonoise (PN) code sequence to modulate and spread a digital message over a predetermined spectral band, prior to modulation of the carrier signal. The same PN code is used to recover the original digital message at the destination.
The above referenced patents disclose communication systems in which a large number of generally mobile or remote system users employ mobile stations or subscriber units (“user terminals”) having at least one transceiver to communicate with other user terminals, or users of other connected systems, such as a public telephone switching network. Communication signals are transferred either through satellites and gateways, or directly to terrestrial base stations (also sometimes referred to as cell-sites or cells).
One type of remote user is a fixed unit, such as a wireless phone, facsimile device, and so forth, in a remote location where wirelines are impractical, such as an offshore oil rig or other remote geographical location. Such remote locations often require that multiple phones be serviced by a single access channel or communication link from a satellite in a “party line” type of service. A party line is a single communications path or link that is used as a shared resource. The defining feature of party line service is that a telephone call can be answered or initiated by a user at one party line phone, and all other party line phones can participate in the telephone call. But, an additional telephone call by a non-participating phone cannot be effected until the first call is terminated.
An exemplary situation would be a telephone call between workers on an offshore oil rig and land-based vendor technicians, where the purpose is to solve a technical problem. It would be advantageous for workers at multiple locations on the oil rig to be able to simultaneously participate in the telephone call. A party line, generally having a single access, address, code, or telephone number, can meet this need.
Another situation in which multiple phones may be required is in a remote geographical land location where it is not cost effective to run standard telephone lines, including mid-desert locations, small island locations, rural-third world locations, and the like. In those cases, a community building having multiple rooms might be setup with phones in each room. Another example would be a remotely located multi-family dwelling, where each family would want to have a phone. In many of these cases, it would not be cost effective to install separate satellite receiving equipment for maintaining separate communications links for each phone. In each of these cases, a party line arrangement would provide a cost effective method of maintaining efficient telephone communication links.
A remote location with party line service can be efficiently linked to a satellite communications system through a radio antenna unit (RAU). An RAU is a transceiver, comprising well known elements, that transmits and receives a modulated carrier signal to and from the satellite communications system through an antenna. During transmission, the RAU accepts audio signals from multiple phones. An audio coder-decoder (or audio codec) in the RAU digitizes the audio signals, which are then used to modulate the carrier signal that is radiated to a satellite (or other relay apparatus) by the antenna. During reception, the RAU receives an input signal comprising a modulated carrier signal from a satellite. The RAU demodulates the input signal to retrieve the digital audio signal. After which, the audio codec converts the digital audio signal to an analog audio signal, and causes the analog audio signal to be sent to the multiple phones. The RAU can use a variety of additional signal processing and control elements as desired, and known in the art.
When the audio signals are primarily composed of human speech, a vocoder may be used to compress (de-compress) the digital bit stream before the carrier signal is modulated (de-modulated) to make more efficient use of the carrier signal bandwidth. The vocoder operates on the principle that speech sounds can be predicted and extrapolated based on the analysis of a small portion of a sound. Thus, the vocoder removes selected bits from the digital bit stream before carrier modulation, and adds them back before de-modulation. Vocoders are especially useful in wireless communications systems where multiple subscribers are competing for limited carrier bandwidth.
The above described communications system requires an audio interface to carry the electrical audio signals between the multiple phones and the RAU.
A conventional audio interface for a POTS (Plain Old Telephone Service) system is full duplex, meaning outgoing transmit signals and incoming receive signals are both carried on the same cable simultaneously. However, both the vocoder and the audio codec require that the transmit and receive signals be separated for proper operation. A POTS system utilizes a hybrid transformer located at either the telephone switching office or in the phone handset to separate the transmit and receive signals.
Interactions between the hybrid transformer, and vocoder or audio codec result in an echo signal that is reflected back to the phone user. Loud echo signals degrade reception quality and are generally unacceptable. A conventional POTS system implements elaborate echo cancellation circuitry at the telephone switching office to suppress or attenuate the echo signal so that it is not reflected back to the phone user. The echo cancellation circuitry is expensive, but since a typical POTS telephone office serves a large number of users, the expense is justified.
The conventional POTS audio interface is an inappropriate choice for a remote location served by a single RAU because it would require the installation of the echo cancellation circuitry at the RAU. Although the RAU supports multiple phones, the number of phones is typically insufficient to justify the expense of the echo cancellation circuitry. What is needed is an audio interface between multiple phones and a single RAU that does not require the use of echo cancellation circuitry.
SUMMARY OF THE INVENTION
The present invention is directed toward an apparatus, system, and method for providing an audio interface between a deskset phone at a first location and an audio codec at a second location. In one embodiment the audio codec is a leading component in a radio antenna unit (RAU).
The audio interface comprises a transmit path comprising a 2-wire transmit cable for carrying a transmit signal from the first location to the second location, and a receive path comprising a 2-wire receive cable for carrying a receive signal from the second location to the first location. The transmit and rece

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Audio interface for satellite user terminals does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Audio interface for satellite user terminals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Audio interface for satellite user terminals will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3202101

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.