Electricity: conductors and insulators – With fluids or vacuum – Conduits – cables and conductors
Reexamination Certificate
2002-07-08
2004-04-27
Maye, III, William H. (Department: 2831)
Electricity: conductors and insulators
With fluids or vacuum
Conduits, cables and conductors
C174S1130AS
Reexamination Certificate
active
06727426
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The field of the invention pertains to cables used in electronic audio frequency systems. More specifically it pertains to audio cables with predictable, musically relevant, and beneficial mechanical resonances for use with microphonic or vibrationally-sensitive equipment, and process with repeatable results for making same.
2. Description of the Prior Art
The widespread use of the telegraph initiated the need for the discovery of many of the electrical parameters used in audio cable design, and the radio and the telephone supplied the impetus for the rest. And while these electrical parameters are of known significance, it will be shown that other parameters are also of significance in a musical culture where microphonic or vibrationally-sensitive equipment such as vacuum tube electronics play such a vital role.
The electronics era was ushered in with the inventions of the vacuum tube and radio. Vacuum tube driven public address systems followed shortly, and were in turn soon followed by other amplified devices such as the electric guitar. The later development of the transistor enabled electronics to become much smaller, lighter, and produce much less heat than their (vacuum) tube counterparts. The transistor also converted less vibrational energy into signal energy than the tube. These differences in size, weight, heat, and microphonics respectively almost caused the tube to disappear from use in the western world.
However, the last decade of the twentieth century saw a resurgence in the use of tube electronics. Despite these obvious technological shortcomings, a significant portion of amateur and professional recording engineers, musicians, and listeners use and prefer the sound of tube electronics.
During the transitional period between the tube and the transistor, a small number of recording engineers and record producers retained some of their tube signal processing electronics instead of trading them in on the transistorized versions that became available in the 1970's. They kept and used these tube products because they sounded more natural; the tube sound had a warmth and smoothness that wasn't available from transistorized equipment. Their work became so well regarded that others started copying their methods, and these others too became widely copied.
Because of this, the tube has made a spectacular comeback and vintage tube electronics are today expensive, high-status items found in every major recording studio. Tubes are an accepted symbiotic companion to the almost universal use of digital recording, processing, and playback equipment. The recent advent of relatively inexpensive digital signal processors and recorders has turned a specialized trend for vintage tube electronics into a general trend that also covers modern tube products, and extends down to the smallest home recording set-up.
The same comeback has occurred with a significant number of home listeners. They feel that music has a more natural and “musical” quality when vintage and some modern tube components are used in their audio systems. Similarly, many guitarists feel that their instruments sound more natural and have a greater responsiveness when used with tube amplifiers or pre-amplifiers.
Many modern tube products are available, for home and professional use, in all price ranges up to a hundred thousand dollars or more. The tube renaissance seems unstoppable. Some companies that opposed the trend several years ago have publicly changed their stance and reintroduced tube products they stopped making 25 or more years ago.
The vibration-sensitivity of a musical instrument is understood. It is well known that each and every part, from the largest to the smallest, has resonances that combine to make up that instrument's sound. This is paralleled in tube equipment because of the tube's microphonic nature. Instead of being impervious to vibrations, a tube will convert some percentage of the vibrational energy to which it is subjected into an AC voltage, which is added to the signal it is passing. It is also well known to those in the field that every tube is microphonic to one degree or another, and that they often become more microphonic as they age.
While the vibration-sensitivity of a musical instrument is taken into account during its construction, the vibration-sensitivity of a tube is usually ignored. Electronics using tubes cannot help but be as sensitive as musical instruments to the materials and techniques of construction. However, the same microphonic characteristic that causes the situation can be used for benefit.
Musical instruments have many avenues for tonal improvement after leaving the factory; musicians constantly buy products on a hunt for better and better tone. There are many aftermarket manufacturers of reeds, mouthpieces, strings, pickups, and bridges, etc., all constructed from differing materials with added embellishments, and all for the improvement of an instrument's tone. Since tube electronics are vibration-sensitive like musical instruments, they can also have their resonance signature modified after leaving the factory. Obvious ways include clamping or attaching resonators directly to the chassis of a tube product.
However, there are other, less obvious methods that allow the modification of the resonance signature of vibration-sensitive/microphonic equipment such as, but not limited to, tube products. The following example is given to illustrate the fact that while the remoteness of a set of resonances may seem at first glance to negate its ability to effect tone, these resonances are in fact a significant contributor to overall tonal quality.
It is common knowledge to those in the field that the degree of tension in a musician's arm and shoulder muscles has a significant effect on an instrument's tone. A reduction of muscle tenseness will mellow not only the musician but also the tone produced by an instrument. The resonant energy of the strings passes through the bow-hair, through the wood of the bow, and into the musician. This energy is filtered by the resonances in the bow-hair, the wood of the bow, and the combination of the mass and spring-rate of the musculature of the arms and shoulders, and coupled back into the instrument where it adds to the resulting tonality.
Some of these effects of external resonances on a musical instrument also find a parallel with tube or other microphonic or vibrationally-sensitive equipment. The flexibility of input and output cables is not a barrier to most transverse or longitudinal vibrations. In fact, connecting cables are direct paths for external vibrational energy. They are solidly and mechanically coupled to a rigid chassis that provides little or nothing to stop vibrations from being conducted directly to microphonic tube elements. The energy conducted through these cables is sufficient to significantly affect the tone of tube equipment. This situation has an analogy in the energy conducted through a bow after having interacted with the muscles of a musician.
Electrical parameters have heretofore been the primary focal point when designing audio cables. In fact, in almost all cases, with the exception of wear resistance issues, electrical parameters have been the only focal point.
There have been many examples of serious and well meaning attempts to further the art of audio cable design. A belief that conductor quality is the key to “better” sound has caused some designers to use copper of ever increasing purity and price, even though the actual reduction in resistance is vanishingly small. Other designers use exotic materials in sophisticated configurations to solve “problems” caused by the “skin effect,” which has to do with the increasing resistance of conductors at very high frequencies, and frequency-dependent velocity differences in the speed of the signal. In actuality, at audio frequencies these “problems” are inaudible. These exotic cable designs can be very expensive and cost as much as one thousand dollars per foot.
Unfort
Guerra David A.
Maye, III William H.
LandOfFree
Audio cables with musically relevant mechanical resonances... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Audio cables with musically relevant mechanical resonances..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Audio cables with musically relevant mechanical resonances... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3241488