Audible indication of disconnection between a convective...

Heating systems – Automatic control – Brooder and incubator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C237S014000, C607S096000, C604S113000, C128S202220

Reexamination Certificate

active

06679432

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to safety measures in the convective treatment of persons. The invention also relates to audibly indicating a condition threatening injury to a person during convective treatment. Such a condition might occur when an air hose is disconnected from a convective device, which can pose the danger of injury resulting from discharging pressurized, thermally-conditioned air from the air hose directly onto the person.
BACKGROUND OF THE INVENTION
A convective treatment system typically consists of at least a temperature-control/blower unit (known simply as a “blower”), a ducting system, and a convective device such as a convective warming blanket. A blower aspirates air from an ambient environment, changes its temperature to a desired value, pressurizes the air above the ambient pressure, and discharges the air at an exhaust port. U.S. Pat. No. 6,126,393 describes such a blower and associated temperature and noise control schemes. In an exemplary convective treatment system, pressurized, thermally regulated air produced by a blower is conveyed through a ducting system and delivered to a convective device, such as a convective warming blanket, that distributes the thermally regulated air around a person or a specific body area of a person. Such treatment is frequently used, for management or modulation of the person's body. core temperature. For example, convective thermal treatment is particularly effective in preventing or mitigating hypothermia.
A convective device may be embodied, for example, in an inflatable device which inflates with pressurized, thermally regulated air and has one or more surfaces adapted for expelling air onto a person. Such devices may lie on, around, or under the person. A convective device is generally realized as a blanket, but can be embodied by other appliances or attachments that are designed to be operated by or with the application of pressurized, thermally conditioned air. When used herein, the term “convective device” is intended to include all blankets, pads, covers, manifolds, and equivalent structures that operate as just described. Irrespective of orientation, a convective device utilized for convective thermal treatment of persons performs at least three basic functions. These functions are 1) the conveyance of thermally conditioned air from at least one inlet port into the device, 2) the imposition of a heat gain or loss that changes the temperature of the thermally conditioned air, and 3) the extravasation of the thermally conditioned air from the device. In the following discussion, the assumption is that such a convective treatment device is operated to warm a person by delivery of heat to the person.
In those convective treatment systems which treat a person by the application of heat, heat may be transferred by convection, radiation, and conduction, but convection generally predominates at the interface between the convective device and the person. The rate of convective heat transfer depends on material properties, surface boundary conditions, and significantly, fluid velocity.
Heat is lost from a convective treatment system whenever a temperature gradient exists between it and the ambient environment. During normal operation of the system, the temperature of the air expelled onto the person is maintained at a level that is generally higher than the person's skin surface temperature, but not high enough to cause tissue damage. In order to counter the loss of heat from the system, however, the air is heated initially to a temperature that may exceed the thermal damage threshold at the target site on the person's skin. Within certain limits, the amount of heat lost from the system is predictable. This predictability allows the system to operate safely by measuring and controlling the temperature at the proximal end of the air supply duct that connects the blower to the convective device. If any factors upon which the assumption of predictability depends are altered, however, the fluid temperature at the distal end of the duct system may be affected.
Several intrinsic and extrinsic factors contribute to the rate of heat loss from a convective treatment system. Among the intrinsic factors are the surface area and material characteristics of the duct and convective device, and the residence time of the warmed air within the duct and convective device. Extrinsic factors include, but are not limited to, ambient temperature and air velocity in the area immediately adjacent to the duct and the convective device. The residence time of the heated fluid within the system is a function of its pressure and the resistance exerted by the entire system. Factors that influence resistance are the duct diameter and length, the orientation of the duct, and the resistance of the convective device or devices.
One hazard associated with the use of convective treatment is burns. First-, second-, and third-degree burns have occurred through the improper use of convective treatment systems. The bum hazard is accentuated by the intentional or accidental alteration of the intrinsic or extrinsic factors that moderate the heat loss in the system. The alteration of any of these factors introduces an unpredictable amount of heat loss into the system, which can significantly alter the temperature or velocity of the heated air delivered to the person. One of the more important factors that influence the temperature of warm air flowing out of the air supply duct through the end where it connects to the convective device is the residence time of the air within the duct. The end through which air flows out of the air supply duct is usually referred to as the “distal end” of the air supply duct. Typically, a nozzle may be mounted to this end. The temperature of pressurized warm air exiting the duct at this end is called “nozzle temperature” (whether or not a nozzle is mounted thereto). In general, a decrease in residence time of the pressurized warmed air is usually associated with an increase in the nozzle temperature of the air.
In the field, a common misuse of one or more components of a convective treatment system may occur. Either intentionally or accidentally, some users fail to connect the convective device to the distal end of the duct and allow the heated air discharged from the distal end to make direct contact with the person. In view of the fact that an air supply duct is typically embodied as an air hose, this practice has come to be known as “hosing” or “free-hosing.” In other cases, operators have failed to connect the convective device to the duct and allowed the heated duct to make direct contact with the person's skin. In still other cases, frequent handling, careless assembly, movement of equipment, and other factors, alone or in combination, may cause the convective device to become wholly or partly disconnected from the duct. Users who have experienced therapeutic misadventures through this type of misuse and/or mistake have reported their experiences of thermal injuries to the FDA and the manufacturers of the offending convective treatment systems. Some manufacturers of have responded by warning and training users and affixing labels to the thermal-control/blower units and convective devices. Despite warnings, training, and labeling, however, persons continue to be injured through misuse of warming devices.
The American Society for Testing and Materials (ASTM) has recently circulated a draft standard (ASTM F29.19.01) from the Subcommittee for Patient Warming Equipment entitled Standard Specification for Circulating Liquid and Forced Air Patient Temperature Management Devices. The members of the ASTM subcommittee recognized the hazards associated with the practice of free-hosing and developed requirements for equipment to limit skin surface temperatures to 48° C., or manufacturers of thermal-control/blower units to affix a cautionary statement to the distal end of the air supply duct that warns the user against the practice of “free-hosing.” Thus, the ASTM standard explicitly reco

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Audible indication of disconnection between a convective... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Audible indication of disconnection between a convective..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Audible indication of disconnection between a convective... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3233730

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.