Fluent material handling – with receiver or receiver coacting mea – Portable systems or track mounted supply means
Reexamination Certificate
2001-07-10
2003-03-25
Douglas, Steven O. (Department: 3751)
Fluent material handling, with receiver or receiver coacting mea
Portable systems or track mounted supply means
C141S082000, C420S402000, C420S407000, C420S900000
Reexamination Certificate
active
06536487
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to hydrogen storage units and alloys. More specifically this invention relates to hydrogen storage alloys which have been atomically engineered to include a spectrum of hydrogen bonding energies and multiple hydride phases which extend and enhance their storage capacity at high pressures. The invention also includes high pressure hydrogen storage units which contain a variable amount of the hydrogen storage alloy therein to enhance the storage capacity of the unit beyond that obtainable by pressurized hydrogen gas alone.
BACKGROUND OF THE INVENTION
Hydrogen is the “ultimate fuel” for the next millennium, and, it is inexhaustible. Hydrogen is the most plentiful element in the universe and can provide an inexhaustible, clean source of energy for our planet which can be produced by various processes which split water into hydrogen and oxygen. The hydrogen can be stored and transported in solid state form.
In the past considerable attention has been given to the use of hydrogen as a fuel or fuel supplement. While the world's oil reserves are depletable, the supply of hydrogen remains virtually unlimited. Hydrogen can be produced from coal, natural gas and other hydrocarbons, or formed by the electrolysis of water, preferably via energy from the sun which is composed mainly of hydrogen and can, itself, be thought of as a giant hydrogen “furnace”. Moreover hydrogen can be produced without the use of fossil fuels, such as by the electrolysis of water using nuclear or solar energy, or any other form of economical energy (e.g., wind, waves, geothermal, etc.). Furthermore, hydrogen, is an inherently low cost fuel. Hydrogen has the highest density of energy per unit weight of any chemical fuel and is essentially non-polluting since the main by-product of “burning” hydrogen is water. Thus, hydrogen can be a means of solving many of the world's energy related problems, such as climate change, pollution, strategic dependancy on oil, etc., as well as providing a means of helping developing nations.
The earliest work at atomic engineering of hydrogen storage materials is disclosed by Stanford R. Ovshinsky (one of the present inventors) in U.S. Pat. No. 4,623,597 (“the '597 patent”), the contents of which are incorporated by reference. Ovshinsky, described disordered multicomponent hydrogen storage materials for use as negative electrodes in electrochemical cells for the first time. In this patent, Ovshinsky describes how disordered materials can be tailor made to greatly increase hydrogen storage and reversibility characteristics. Such disordered materials are formed of one or more of amorphous, microcrystalline, intermediate range order, or polycrystalline (lacking long range compositional order) wherein the polycrystalline material may include one or more of topological, compositional, translational, and positional modification and disorder, which can be designed into the material. The framework of active materials of these disordered materials consist of a host matrix of one or more elements and modifiers incorporated into this host matrix. The modifiers enhance the disorder of the resulting materials and thus create a greater number and spectrum of catalytically active sites and hydrogen storage sites.
The disordered electrode materials of the '597 patent were formed from lightweight, low cost elements by any number of techniques, which assured formation of primarily non-equilibrium metastable phases resulting in the high energy and power densities and low cost. The resulting low cost, high energy density disordered material allowed such Ovonic batteries to be utilized most advantageously as secondary batteries, but also as primary batteries and are used today worldwide under license from the assignee of the subject invention.
Tailoring of the local structural and chemical order of the materials of the '597 patent was of great importance to achieve the desired characteristics. The improved characteristics of the anodes of the '597 patent were accomplished by manipulating the local chemical order and hence the local structural order by the incorporation of selected modifier elements into a host matrix to create a desired disordered material. The disordered material had the desired electronic configurations which resulted in a large number of active sites. The nature and number of storage sites was designed independently from the catalytically active sites.
Multiorbital modifiers, for example transition elements, provided a greatly increased number of storage sites due to various bonding configurations available, thus resulting in an increase in energy density. The technique of modification especially provides non-equilibrium materials having varying degrees of disorder provided unique bonding configurations, orbital overlap and hence a spectrum of bonding sites. Due to the different degrees of orbital overlap and the disordered structure, an insignificant amount of structural rearrangement occurs during charge/discharge cycles or rest periods therebetween resulting in long cycle and shelf life.
The improved battery of the '597 patent included electrode materials having tailor-made local chemical environments which were designed to yield high electrochemical charging and discharging efficiency and high electrical charge output. The manipulation of the local chemical environment of the materials was made possible by utilization of a host matrix which could, in accordance with the '597 patent, be chemically modified with other elements to create a greatly increased density of catalytically active sites for hydrogen dissociation and also of hydrogen storage sites.
The disordered materials of the '597 patent were designed to have unusual electronic configurations, which resulted from the varying 3-dimensional interactions of constituent atoms and their various orbitals. The disorder came from compositional, positional and translational relationships of atoms. Selected elements were utilized to further modify the disorder by their interaction with these orbitals so as to create the desired local chemical environments.
The internal topology that was generated by these configurations also allowed for selective diffusion of atoms and ions. The invention that was described in the '597 patent made these materials ideal for the specified use since one could independently control the type and number of catalytically active and storage sites. All of the aforementioned properties made not only an important quantitative difference, but qualitatively changed the materials so that unique new materials ensued.
The disorder described in the '597 patent can be of an atomic nature in the form of compositional or configurational disorder provided throughout the bulk of the material or in numerous regions of the material. The disorder also can be introduced into the host matrix by creating microscopic phases within the material which mimic the compositional or configurational disorder at the atomic level by virtue of the relationship of one phase to another. For example, disordered materials can be created by introducing microscopic regions of a different kind or kinds of crystalline phases, or by introducing regions of an amorphous phase or phases, or by introducing regions of an amorphous phase or phases in addition to regions of a crystalline phase or phases. The interfaces between these various phases can provide surfaces which are rich in local chemical environments which provide numerous desirable sites for electrochemical hydrogen storage.
These same principles can be applied within a single structural phase. For example, compositional disorder is introduced into the material which can radically alter the material in a planned manner to achieve important improved and unique results, using the Ovshinsky principles of disorder on an atomic or microscopic scale.
One advantage of the disordered materials of the '597 patent were their resistance to poisoning. Another advantage was their ability t
Huang Baoquan
Ovshinsky Stanford R.
Young Rosa
Douglas Steven O.
Energy Conversion Devices Inc.
Mau II Frederick W.
Schumaker David W.
Siskind Marvin S.
LandOfFree
Atomically engineered hydrogen storage alloys having... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Atomically engineered hydrogen storage alloys having..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Atomically engineered hydrogen storage alloys having... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3064204