Single-crystal – oriented-crystal – and epitaxy growth processes; – Forming from vapor or gaseous state – With decomposition of a precursor
Reexamination Certificate
2008-07-15
2008-07-15
Kunemund, Robert (Department: 1792)
Single-crystal, oriented-crystal, and epitaxy growth processes;
Forming from vapor or gaseous state
With decomposition of a precursor
C117S084000, C117S088000, C117S091000, C117S099000, C117S103000, C117S108000, C117S944000, C117S950000
Reexamination Certificate
active
07399357
ABSTRACT:
A method for the controlled growth of thin films by atomic layer deposition by making use of multilayers and using energetic radicals to facilitate the process is described in this invention. In this method, a first reactant is admitted into the reaction chamber volume, where there is a substrate to be coated. This first reactant then adsorbs, in a self-limiting process, onto the substrate to be coated. After removing this first reactant from the reaction chamber volume, leaving a layer coating the substrate, a second reactant is then admitted into the reaction chamber volume, which adsorbs onto this initial layer in a self-limiting process. The second reactant is then also removed from the reaction chamber volume. Following this procedure a self-limited multilayer of unreacted species remains adsorbed on the substrate to be coated. If additional chemical species are desirable, these exposures and removals could be continued. Next this multilayer is exposed to a flux of radicals. In particular, radicals are chosen that will not damage or have any deleterious effect on the surface underlying the deposited film. When these energetic radicals interact with the surface and release their energy, a chemical reaction between the adsorbed species is induced, and a layer of solid reaction product can be formed. This process is repeated to grow a thin film of any desired thickness.
REFERENCES:
patent: 5916365 (1999-06-01), Sherman
patent: 6200893 (2001-03-01), Sneh
patent: 6342277 (2002-01-01), Sherman
patent: 6451695 (2002-09-01), Sneh
patent: 6475910 (2002-11-01), Sneh
patent: 6486047 (2002-11-01), Lee et al.
patent: 6537925 (2003-03-01), Kim et al.
patent: 6576053 (2003-06-01), Kim et al.
patent: 6673701 (2004-01-01), Marsh et al.
patent: 2002/0068458 (2002-06-01), Chiang et al.
patent: 2002/0076946 (2002-06-01), Kim et al.
patent: 2002/0104481 (2002-08-01), Chiang et al.
patent: 2003/0003635 (2003-01-01), Paranjpe et al.
patent: 2003/0008072 (2003-01-01), Lee et al.
patent: 2003/0017697 (2003-01-01), Choi et al.
patent: 2003/0040196 (2003-02-01), Lim et al.
patent: 2003/0070617 (2003-04-01), Kim et al.
patent: 0442490 (1991-08-01), None
Bedair, S.M., “Atomic layer epitaxy deposition processes” J. Vac. Sci. Technol. B12, 179 (1994).
Chae, B.-G., et al, “New high-k SrTa2O6gate dielectrics prepared by plasma-plasma-enhanced atomic layer chemical vapor deposition” J. Appl. Phys. 41, L729 (2002).
Chen, C-C., et al, “Remote plasma enhanced atomic layer deposition (RPEALD) nitride/oxide gate dielectric for sub-65 nm low standby power CMOS application” 2003 Symposium on VLSI Technology, Kyoto, Japan.
Cheng, D., et al, “The integration of plasma enhanced atomic layer deposition (PEALD) of tantalum-based thin films for copper diffusion barrier applications” Mat.Res. Soc. Symp. Proc. 766, E10.4.1 (2003).
Choi, S.W., et al, “Plasma enhanced atomic layer deposition of Al2O3and Ta2O5” American Vacuum Society ALD Conference, Korea, Aug. 2002.
Choi, S-W., et al, “Plasma enhanced atomic layer deposition of Al2O3and TiN” Joint International Plasma Symposium of 6th APCPST, 15th SPSM, OS2002 and 11th KAPRA Conf., Jul. 2002, Korea.
De Keijser, M., et al, “Atomic layer epitaxy of gallium arsenide with the use of atomic hydrogen” Appl. Phys. Lett. 58, 1187 (1991).
Endo, K., et al, “Atomic layer deposition of high-k gate dielectrics using MO precursor and cyclic plasma exposure” Mat. Res. Soc. Symp. Proc. 745, N2.8.1 (2003).
Fujiwara, H., et al, “Low temperature growth of ZnSxSe1-xalloys fabricated by hydrogen radical enhanced chemical vapor deposition in an atomic layer epitaxy mode” J. Appl. Phys. 74, 5510 (1993).
Gotoh, J., et al, “Low temperature growth of ZnSe-based pseudomorphic structures by hydrogen-radical-enhanced chemical vapor deposition” J. Cryst. Growth 117, 85 (1992).
Greer, F., et al, “Fundamental beam studies of radical enhanced atomic layer deposition of TiN” J. Vac. Sci. Technol. A21, 96 (2003).
Hasunuma, E., et al, “Gas phase reaction controlled atomic layer epitaxy of silicon” J. Vac. Sci. Technol. A16, 679 (1998).
Hiramatsu, K., et al, “Formation of TiN films with low Cl concentration by pulsed plasma chemical vapor deposition” J. Vac. Sci. Technol. A14, 1037 (1996).
Imai, S., et al, “Atomic layer epitaxy of silicon using atomic H” Thin Solid Films 225,168 (1993).
Jeong, C-W., et al, “Plasma assisted atomic layer growth of high quality aluminum oxide thin films” Jpn. J. Appl. Phys. 40, 285 (2001).
Kil, D-S., et al, “Low-temperature ALD growth of SrTiO3thin films from Sr β-diketonates and Ti alkoxide precursors using oxygen remote plasma as an oxidation source” Chem. Vap. Deposition 8, 195 (2002).
Kim, H., et al, “Growth of cubic-TaN thin films by plasma-enhanced atomic layer deposition” J. Appl. Phys. 92, 7080 (2002).
Kim, H., et al, “The growth of tantalum thin films by plasma-enhanced atomic layer deposition and diffusion barrier properties” Mat. Res. Soc. Proc. 716, B8.5.1 (2002).
Kim, H., et al, “Growth kinetics and initial stage growth during plasma-enhanced Ti atomic layer deposition” J.Vac. Sci. Technol. A20, 802 (2002).
Kim, Y.T., et al, “Pulse plasma enhanced atomic layer deposition of tungsten nitride diffusion barrier for copper multi-level interconnect” 201stElectrochemical Society Mtg., Phila., PA, May, 2002.
Kim, J.Y., et al, “Characteristics of TiN films deposited by remote plasma enhanced atomic layer deposition method” Jpn. J. Appl. Sci. 42, L414 (2003).
Koleski, D.D., et al, “Atomic layer epitaxy of Si on Ge(100) using Si2Cl6and atomic hydrogen” Appl. Phys. Lett. 64, 884 (1994).
Lee, Y.J., et al, “Ti-Al-N thin films prepared by the combination of metallorganic plasma-enhanced atomic layer deposition of Al and TiN” Electrochem. Solid-State Lett. 6, C-70 (2003).
Lee, Y.J., et al, “Atomic layer deposition of aluminum thin films using an alternating supply of trimethylaluminum and a hydrogen plasma” Electrochem. Solid-State Lett. 5, C91 (2002).
Mahajan, A., et al, “Si atomic layer epitaxy based on Si2 H6 and remote He plasma bombardment” Thin Solid Films 225, 177 (1993).
Meguro, T., et al, “Effects of active hydrogen on atomic layer epitaxy of GaAs” Appl. Surf. Sci. 112, 118 (1997).
Park, J-S., et al, “Plasma-enhanced atomic layer deposition of Ta-N thin films” J. Electrochem. Soc. 149, C28 (2002).
Song, H-J., et al, “Tantalum oxide films grown by plasma enhanced atomic layer deposition” Second International Conference on Microelectronics and Interfaces, AVS, Feb. 2001, Santa Clara, CA.
Sugahara, S., et al, “Atomic layer epitaxy of germanium” Appl. Surf. Sci. 82/83, 380 (1994).
Sugahara, S., et al, “Atomic hydrogen assisted ALE of germanium” Appl. Surf. Sci. 90, 349 (1995).
Sugahara, S., et al, “Modeling of silicon atomic layer epitaxy” Appl. Surf. Sci. 107, 161 (1996).
Wisotski, E., et al, “Room temperature growth of ZrO2thin films using a novel hyperthermal oxygen atom source” J. Vac. Sci. Technol. A17, 14 (1999).
Zhang, Z., et al, “Plasma enhanced NLD TiN barrier for sub-micron (<130 nm) ICs applications” AVS ALD 2002 Conference, Aug. 2002, Korea.
Kunemund Robert
Kwok Edward C.
MacPherson Kwok & Chen & Heid LLP
Song Matthew J
LandOfFree
Atomic layer deposition using multilayers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Atomic layer deposition using multilayers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Atomic layer deposition using multilayers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2777278