ATM switch

Multiplex communications – Pathfinding or routing – Switching a message which includes an address header

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06507584

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an ATM (Asynchronous Transfer Mode) switch that exchanges ATM cells. More particularly, the present invention relates to a large scale ATM switch that can be expanded with hardware in proportion to increase in capacity, wherein the expanded ATM switch does not internally block traffic flow.
Various structures for large scale ATM switches have been proposed. Such large scale ATM switches are intended to increase the speed and permit the implementation of a large scale ATM communications in a communication network. An example of a large scare ATM switch is described in Japanese patent Laid-open Publication 4-98937 corresponding to U.S. Pat. No. 5,557,621. The large scale ATM switch described therein is a cell division type ATM switch. A cell division type ATM switch divides an ATM cell into a plurality of partial cells, and exchanges the partial cells with a plurality of ATM switch units. Each of the ATM switch units are independently operated and can properly be used to increase the capacity of an ATM switch.
However, in the cell division type ATM switch described above, it is necessary to add the same header to all of the partial cells. If there are a large number of partial cells throughput of the ATM switch decreases due to the fact that the portion of each partial cell occupied by the header increases. Further, if the size of a cell is fixed, a limit arises in the number of cell partitions that can be performed. In other words, when a fixed-length cell is used, increases in capacity of an ATM switch is limited when the switch is a cell division type ATM switch.
Another cell division type ATM switch is described in Japanese patent Laid-open Publication 2-67045. This switch slices a cell into a plurality of signals, and exchanges the signals with a plurality of subswitches. In this type of ATM switch, a limit arises in bit-slicing a cell similar to the cell-division type ATM switch disclosed in 4-98937. Thus, a limit also arises in the capacity of the ATM switch disclosed in 2-67045.
FIG. 2
illustrates a known structure of a large scale ATM switch. This switch connects a plurality of ATM switch units, which have predetermined exchange abilities to form an ATM switch matrix. In this switch the blocking of traffic does not occur in spite of the large scale nature of the switch. Further, this switch can be easily expanded to provide even larger capacity. However, a disadvantage of the ATM switch matrix is that desired increases in capacity requires increasingly larger amount of hardware to accomplish the increases. Therefore, this switch is not suitable for use in an exchange system wherein size considerations are important.
Another large scale ATM switch is described in an article “Configuration of ATM Switching Networks which are Non-blocking at Call Level” by Sesaki et al., The Transaction of the Institute of Electronics, Information and Communication Engineers, B-I, J76-B-B, No. 1, pp. 32-39 (January 1993). This switch provides a large scale ATM switch by connecting ATM switches in parallel as illustrated in FIG.
3
. The switch provides increased capacity by use of the following structure:
(1) A plurality of multiplexers (MUX)
11
and a plurality of demultiplexers (DMUX)
12
are arranged in parallel on the input side of a plurality of ATM switches
10
are also arranged in parallel;
(2) A plurality of multiplexers (MUX)
13
and a plurality of demultiplexers (DMUX)
14
are arranged in parallel on the output side of the ATM switches
10
; and
(3) The ATM switches
10
share traffic load on the cell level or connection level, and exchange cells.
The matrix ATM switch illustrated in
FIG. 2
provides advantages in that even when the switch is expanded an internal blocking of traffic does not occur in. However, the disadvantage is that when the switch is expanded K times the capacity of a single ATM switch unit, the number of ATM switch units required is 4K
2
. For example, when the capacity of the matrix ATM switch is doubled, 16 ATM switch units are required. Thus, a proportionately larger quantity of ATM switch units are required for each unit increase of capacity of the matrix ATM switch.
In the ATM switch illustrated in
FIG. 3
, if load sharing of traffic is performed at random according to the cell level, there is a possibility of the occurrence of reversing the sequential order of the cells. Thus, to properly reconstruct the cell order a time stamp is necessary on the output side of the switch. Implementation of an ATM switch using a time stamp requires the addition of hardware and complex control thereof. Further, if load sharing of traffic is performed according to the connection level, internally a blocking of traffic in the ATM switch occurs. To remove the blocking of traffic the number of ATM switches installed in parallel is increased or the internal link speed is increased to a level higher than that of the input/output line speed. Thus, similar to the above, the addition of redundant hardware becomes necessary.
Therefore, according to the above, a desired increase in the capacity of a conventional large scale ATM switch is accomplished by increasing the number of ATM switch units. However, the increase in capacity is accomplished by a proportionally larger increase in hardware. In numerous application size is an important consideration, thereby limiting large increases in hardware. However, limiting increases in hardware increases the possibility that blocking of traffic may occur.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an ATM switch that can easily be expanded with just minimal hardware additions.
Another object of the present invention is to provide an ATM switch that can be easily expanded by connecting small capacity ATM switch units in parallel to form a large scale ATM switch.
Yet another object of the present invention is to provide a large scale ATM switch having a plurality of ATM switch units connected in parallel, wherein internal blocking of traffic does not occur.
Still yet another object of the present invention is to provide an ATM switch that adds minimal hardware for each unit increase in capacity.
The present invention provides a method of expanding the capacity of an ATM switch suitable for constructing a large scale ATM switch. Specifically, the present invention provides the following for expanding the capacity of an ATM switch. Providing a small capacity ATM switch unit. Connecting others of such ATM switch units in parallel to increase the capacity of the ATM switch to form a large scale ATM switch. The large scale ATM switch expanded in the manner described above does not require an additional new control circuit and a control procedure thereof. The expansion procedure is simple being that it can be accomplished by the addition of minimal hardware. Further, the internal blocking of traffic in the ATM switch does not occur.
In the present invention an increase in the capacity of an ATM switch can be accomplished easily by small additions of hardware. For example, when doubling the capacity of an ATM switch the quantity of a switch is doubled. Thus, when the capacity is increased 4 times, the quantity of the hardware of the switch is increased 4 times. Therefore, in the present invention the expansion of the capacity of an ATM switch is essentially proportional to an increase in the quantity of the hardware added to the ATM switch to accomplish the desired increase.
The present invention also provides control methods for an ATM switch, such as a cell distribution method for an expanded switch, a cell assembling method for each of the switches, and a cell control method for the entire switch. These control methods prevent internal blocking of traffic in the ATM switch even if the capacity of the ATM switch is increased.
The ATM switch of the present invention can easily perform cell distribution and assembling without the need for complex control even when the capacity of the switch is increased. To accomplish this, the present invention prov

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

ATM switch does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with ATM switch, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and ATM switch will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3050784

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.