Athletic shoe or sneaker with stabilization device

Boots – shoes – and leggings – Boots and shoes – Foot-supporting or foot-conforming feature

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C036S089000, C036S114000, C036S058500, C036S117900

Reexamination Certificate

active

06775929

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention concerns a stabilization device for an athletic shoe such as a sneaker. More particularly, the present invention is directed to an intrinsic stabilization device and also an extrinsic safety support for an athletic shoe to effectively prevent ankle sprains.
2. Background Information
The modern athletic shoe, especially shoes for basketball, has become quite stylish. However, there is a very high incidence of ankle sprains in both competitive and recreational athletes (“Lateral Ankle Sprains and Instability Problems”, Liu, Stephen H., Jason, William J.,
Clinics in Sports Medicine
, Vol. 13, No. 4, October 1994). The modern athletic shoe, particularly for basketball, may actually contribute to the high incidence of lateral ankle sprains. There have been many previous attempts at improving the safety of the athletic shoe, mostly increasing the height of the shoe (“Basketball Shoe Height and the Maximal Muscular Resistance to Applied Ankle Inversion and Eversion Moments”, Ottaviani, Robert A., Ashton-Miller, James A., Kothari, Sandip U. and Wojtys, Edward M.,
The American Journal of Sports Medicine
, Vol. 23, No. 4, 1995; “High- Versus Low-Top Shoes For the Prevention of Ankle Sprains in Basketball Players; A Prospective Randomized Study”, Barrett, James R., Tanji, Jeffrey L, Drake, Christian et al.,
The American Journal of Sports Medicine
, Vol. 21, No. 4, 1993). Since this did not significantly reduce the incidence of lateral ankle sprains, many extrinsic devices have been used and developed in conjunction with the high-top shoe. These extrinsic devices include tape, braces, orthotics and elastic wraps (“The Prevention of Ankle Sprains in Sports; A Systematic Review of the Literature”, Thacker, Stephen B., Stroup, Donna F., Branche, Christine M. et al.,
The American Journal of Sports Medicine
, Vol. 27, No. 6, 1999; “The Efficacy of a Semirigid Ankle Stabilizer to Reduce Acute Ankle Injuries in Basketball, A Randomized Clinical Study of West Point”, Sitler, Michael, Ryan, Jack, Wheeler, Bruce et al.,
The American Journal of Sports Medicine
, Vol. 22, No. 4, 1994; “Interventions for Preventing Ankle Ligament Injuries”, Quinn, K., Parker, P., de Bie, R. et al.,
Cochrane Database Syst. Rev.
2000; (2): CD000018). Each of these extrinsic devices has specific problems.
Lateral ankle sprain is the most common injury in basketball players and one of the most common overall sports injuries seen in medical emergency rooms. While this injury is most common for basketball players, this injury often occurs in other sports which involve jumping, and running with sharp cuts. These sports include soccer, football, volleyball, cross-country running, tennis, track, and baseball (“The Prevention of Ankle Sprains in Sports; A Systematic Review of the Literature”, Thacker, Stephen B., Stroup, Donna F., Branche, Christine M. et al.,
The American Journal of Sports Medicine
, Vol. 27, No. 6, 1999).
The most common mechanism of injury in basketball is a player jumping up and landing on an uneven surface, often another player's foot (“Lateral Ankle Sprains and Instability Problems”, Liu, Stephen H., Jason, William J.,
Clinics in Sports Medicine
, Vol. 13, No. 4, October 1994; “Sprained Ankles as They Relate to the Basketball Player”, Johnson, Kenneth A., Teasdall, Robert D.,
Clinics in Sports Medicine
, Vol. 12, No. 2, April 1993; “Basketball Injuries of the Foot and Ankle”, McDermott, Edward P.,
Clinics in Sports Medicine
, Vol. 12, No. 2, 1993; “Physics of an Inversion Ankle Sprain”, McIntyre, Kelli, Internet site http://members.aol.com/SRobson 32/kelly.html). The foot is generally in plantar flexion and inverted. When the vertically loaded lateral forces exceed the everting muscles of the lower leg, the lateral ligaments tear. The anterior talofibular ligament is the most commonly injured ligament, followed by the calcaneofibular ligament and the posterior talofibular ligament. In the other sports described above, similar vertical loading also can occur. Another mechanism is excessive force applied to the medial ankle, such as a baseball player sliding into another player's ankle or a soccer player “slide tackling” another to steal the ball.
While athletic shoes have become increasingly stylish, they have not been able to reduce the incidence of lateral ankle sprains. In fact, the nature of the design of shoes with a hard sole with firm medial and lateral edges in conjunction with a soft upper portion actually contributes to and exacerbates the problems of lateral instability, as described above. When an ankle inverts in plantar flexion, and especially when a vertical load is applied when landing from a jump, the point of landing is on the hard lateral edge of the sports shoe. The relatively softer upper portion of the shoe connected to the hard lower sole bends on an acute angle. This causes apposition of the medial part of the shoe with the medial ankle and a wide gap that forms between the soft upper shoe and the lateral ankle. It is this “disconnect” that develops between the shoe and the lateral ankle that leads to a lack of support. The forces are entirely placed on the lateral ligaments (described above) which subsequently tear, as they cannot support the full weight of the body landing on them as may happen in the various sports activities discussed above.
The above explanation accounts for the fact that high-top shoes do no better than low-top shoes in preventing lateral ankle sprains. The current design of sports shoes, especially basketball shoes, do not adequately protect the lateral ligaments. To illustrate this point, if one stands on the lateral edges of modern basketball shoes, then allows one's ankle to invert gently, one can feel the stresses laterally. This is under controlled conditions without movement, or vertical loading. On the other hand, lateral injuries rarely occur in shoeless athletes that jump (i.e., beach volleyball). If one jumps in place and intentionally inverts the ankle while shoeless, no particular lateral stress is appreciated.
Ankle injuries during skiing have almost totally disappeared with the development of the uniformly firm and stiff ankle boots used in modern skiing. When a foot in a ski boot inverts, the ankle and the boot are in unison, totally connected, and this does not allow the boot and the ankle to form the large lateral gaps needed to stress the lateral ligaments. Unfortunately, in skiing, the stresses have moved up to the knee joint, where injuries are now quite common. However, the stiffness of a ski boot would not be practical in any of the other sports discussed herein.
As discussed above, current solutions to attempt to avoid ankle sprains in athletes consist of externally applied tape, braces and orthotics. However, each of these have significant problems associated with them. External taping has been the traditional method used to prevent capsuloligamentous injuries of the ankle. There is mixed data to the efficacy of taping in preventing ankle sprains. It is well known that tape loosens with physical activity, with a 50% reduction in initial support after 10 minutes of exercise and with little if any support after 30 minutes (“The Prevention of Ankle Sprains in Sports; A Systematic Review of the Literature”, Thacker, Stephen B., Stroup, Donna F., Branche, Christine M. et al.,
The American Journal of Sports Medicine
, Vol. 27, No. 6, 1999; “The Efficacy of a Semirigid Ankle Stabilizer to Reduce Acute Ankle Injuries in Basketball, A Randomized Clinical Study of West Point”, Sitler, Michael, Ryan, Jack, Wheeler, Bruce et al.,
The American Journal of Sports Medicine
, Vol. 22, No. 4, 1994). While the strength of the tape may initially be able to prevent the “lateral gap” formed with forced inversion, the ability of the tape to do so later during the activity is markedly diminished. Since the tape is extrinsic to both the ankle and the shoe, the disconnect described above exists with taping. Secondly, tape is expensive and the cost is additiv

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Athletic shoe or sneaker with stabilization device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Athletic shoe or sneaker with stabilization device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Athletic shoe or sneaker with stabilization device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3360665

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.