Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2001-04-13
2004-02-24
Jastrzab, Jeffrey R. (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
C600S025000
Reexamination Certificate
active
06697674
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an at least partially implantable system for rehabilitation of a hearing disorder which comprises at least one sensor (microphone) for picking up an acoustic signal and converting it into the corresponding electrical signals, an electronic signal processing unit for audio signal processing and amplification, an electrical power supply unit which supplies individual components of the system with current, and an output-side actoric stimulation arrangement.
2. Description of Related Art
The expression “hearing disorder” is defined here as inner ear damage, combined inner ear and middle ear damage, and a temporary or permanent noise impression (tinnitus).
In recent years rehabilitation of sensorineural hearing disorders with partially implantable electronic systems has acquired major importance. In particular this applies to the group of patients in which hearing has completely failed due to accident, illness or other effects or is congenitally non-functional. If in these cases only the inner ear (cochlea) and not the neural auditory path which leads to the brain is affected, the remaining auditory nerve can be stimulated with electrical stimulation signals and thus a hearing impression can be produced which can lead to speech comprehension. In these so-called cochlear implants (CI) an array of stimulation electrodes which is controlled by an electronic system (electronic module) is inserted into the cochlea. This electronic module is encapsulated hermetically tightly and biocompatibly and is surgically embedded in the bony area behind the ear (mastoid). The electronic system, however, contains essentially only decoder and driver circuits for the stimulation electrodes. Acoustic sound reception, conversion of this acoustic signal into electrical signals and their further processing always take place externally in a so-called speech processor which is worn outside on the body. The speech processor converts the preprocessed signals coded accordingly onto a high frequency carrier signal which via inductive coupling is transmitted through the closed skin (transcutaneously) to the implant. The sound-receiving microphone always is located outside of the body and in most applications in a housing of a behind-the-ear hearing aid worn on the external ear and is connected to the speech processor by a cable. Such cochlear implant systems, their components and the principles of transcutaneous signal transmission are described, by way of example, in published European Patent Application EP 0 200 321 A2 and in U.S. Pat. Nos. 5,070,535, 4,441,210, 5,626,629, 5,545,219, 5,578,084, 5,800,475, 5,957,958 and 6,038,484. Processes of speech processing and coding in cochlear implants are described, for example, in published European Patent Application EP 0 823 188 A1, in European Patent 0 190 836 B1 and in U.S. Pat. Nos. 5,597,380, 5,271,397, 5,095,904, 5,601,617 and 5,603,726.
In addition to rehabilitation of congenitally deaf persons and those who have lost their hearing using cochlear implants, for some time there have been approaches to offer better rehabilitation than with conventional hearing aids to patients with a sensorineural hearing disorder which cannot be surgically corrected by using partially or totally implantable hearing aids. The principle consists in most embodiments in stimulating an ossicle of the middle ear or directly the inner ear via mechanical or hydromechanical stimulation and not via the amplified acoustic signal of a conventional hearing aid in which the amplified acoustic signal is supplied to the external auditory canal. The actuator stimulus of these electromechanical systems is accomplished with different physical transducer principles such as for example by electromagnetic and piezoelectric systems. The advantage of these devices is seen mainly in the sound quality which is improved compared to conventional hearing aids and for totally implanted systems in the fact that the hearing prosthesis is not visible. These partially and fully implantable electromechanical hearing aids are described, for example, by Yanigahara et al. “Implantable Hearing Aid”, Arch Otolaryngol Head Neck Surg-Vol 113, 1987, pp. 869-872; Suzuki et al. “Implantation of Partially Implantable Middle Ear Implant and the Indication”, Advances in Audiology, Vol. 4, 160-166, Karger Basel, 1988; H. P. Zenner et al. “First implantations of a totally implantable electronic hearing system for sensorineural hearing loss”, in HNO Vol. 46, 1998, pp. 844-852; H. Leysieffer et al. “A totally implantable hearing device for the treatment of sensorineural hearing loss: TICA LZ 3001”, HNO Vol. 46, 1998, pp. 853-863; H. P. Zenner et al. “Active electronic hearing implants for patients with conductive and sensorineural hearing loss—a new era of ear surgery”, HNO 45: 749-774; H. P. Zenner et al. “Totally implantable hearing device for sensorineural hearing loss”, The Lancet Vol. 352, No. 9142, page 1751; and are described in numerous patent documents, thus among others in published European Patent Applications EP 0 263 254 A1, in European Patents EP 0 400 630 B1 and EP 0 499 940 B1 and in U.S. Pat. Nos. 3,557,775, 3,712,962, 3,764,748, 5,411,467, 4,352,960, 4,988,333, 5,015,224, 5,015,225, 5,360,388, 5,772,575, 5,814,095, 5,951,601, 5,977,689 and 5,984,859. Here the insertion of an electromechanical transducer through an opening in the promontory for direct fluid stimulation in the inner ear is described in U.S. Pat. Nos. 5,772,575, 5,951,601, 5,977,689 and 5,984,859.
Many patients with inner ear damage also suffer from temporary or permanent noise impressions (tinnitus) which cannot be surgically corrected and against which up to date there are no approved drug treatments. Therefore so-called tinnitus maskers (WO-A 90/07251, published European Patent Application EP 0 537 385 A1, German Utility Model No. 296 16 956) are known. These devices are small, battery-driven devices which are worn like a hearing aid behind or in the ear and which, by means of artificial sounds which are emitted via for example a hearing aid speaker into the auditory canal, psychoacoustically mask the tinnitus and thus reduce the disturbing noise impression if possible to below the threshold of perception. The artificial sounds are often narrow-band noise (for example, tierce noise) which can be adjusted in its spectral position and its loudness level via a programming device to enable adaptation to the individual tinnitus situation as optimum as possible. In addition, there since recently exists the so-called retraining method in which by combination of a mental training program and presentation of broadband sound (noise) near the auditory threshold in quiet the perceptibility of the tinnitus is likewise supposed to be largely suppressed (H. Knoer “Tinnitus retraining therapy and hearing acoustics” journal “Hoerakustik” February 1997, pages 26 and 27). These devices are also called “noisers”.
In the two aforementioned methods for hardware treatment of tinnitus, hearing aid-like, technical devices must be carried visibly outside on the body in the area of the ear; they stigmatize the wearer and therefore are not willingly worn.
U.S. Pat. No. 5,795,287 describes an implantable tinnitus masker with direct drive of the middle ear for example via an electromechanical transducer coupled to the ossicular chain. This directly coupled transducer can preferably be a so-called “Floating Mass Transducer” (FMT). This FMT corresponds to the transducer for implantable hearing aids which is described in U.S. Pat. No. 5,624,376.
In commonly owned co-pending U.S. patent application Ser. Nos. 09/372,172 and 09/468,860 which are hereby incorporated by reference implantable systems for treatment of tinnitus by masking and/or noiser functions are described, in which the signal-processing electronic path of a partially or totally implantable hearing system is supplemented by corresponding electronic modules such that the signals necessary for tinnitus masking or noiser functions can be fe
Cochlear Limited
Jastrzab Jeffrey R.
Nixon & Peabody LLP
Safran David S.
LandOfFree
At least partially implantable system for rehabilitation of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with At least partially implantable system for rehabilitation of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and At least partially implantable system for rehabilitation of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3280115