At least partially implantable hearing system with direct...

Surgery – Surgically implanted vibratory hearing aid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S057000

Reexamination Certificate

active

06629923

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an at least partially implantable system for rehabilitation of a hearing disorder comprising at least one acoustic sensor for picking up acoustic sensor signals and converting them into corresponding electrical audio sensor signals, an electronic signal processing unit for audio signal processing and amplification of the electrical sensor signals, an electrical power supply unit which supplies individual components of the system with energy, and an actoric output arrangement for direct mechanical stimulation of a lymphatic inner ear space.
2. Description of Related Art
The term “hearing disorder” is defined here as including all types of inner ear damages, combined inner ear and middle ear damages, and a temporary or permanent noise impression (tinnitus).
In recent years, rehabilitation of sensorineural hearing disorders with partially implantable electronic systems has acquired major importance. In particular, this applies to the group of patients in which hearing has completely failed due to accident, illness or other effects or in which hearing is congenitally non-functional. If, in these cases, only the inner ear (cochlea), and not the neural auditory path which leads to the brain, is affected, the remaining auditory nerve can be stimulated with electrical stimulation signals. Thus, a hearing impression can be produced which can lead to speech comprehension. In these so-called cochlear implants (CI), an array of stimulation electrodes, which is controlled by an electronic system (electronic module), is inserted into the cochlea. This electronic module is encapsulated with a hermetic, biocompatible seal and is surgically embedded in the bony area behind the ear (mastoid). The electronic system contains essentially only decoder and driver circuits for the stimulation electrodes. Acoustic sound reception, conversion of this acoustic signal into electrical signals and their further processing, always takes place externally in a so-called speech processor which is worn outside on the body. The speech processor converts the preprocessed signals into a correspondingly coded high frequency carrier signal which, via inductive coupling, is transmitted through the closed skin (transcutaneously) to the implant. The sound-receiving microphone is always located outside of the body and, in most applications, in a housing of a behind-the-ear hearing aid worn on the external ear. The microphone is connected to the speech processor by a cable. Such cochlear implant systems, their components, and the principles of transcutaneous signal transmission are described, by way of example, in U.S. Pat. Nos. 5,070,535, 4,441,210 and 5,626,629. Processes of speech processing and coding in cochlear implants are described, for example, in Published European Patent Application EP 0 823 188 A1, in European Patent EP 0 190 836 A1 and in U.S. Pat. Nos. 5,597,380, 5,271,397, 5,095,904, 5,601,617 and 5,603,726.
In addition to rehabilitation of congenitally deaf persons and those who have lost their hearing using cochlear implants, for some time there have been approaches to offer better rehabilitation than with conventional hearing aids to patients with a sensorineural hearing disorder which cannot be surgically corrected by using partially or totally implantable hearing aids. The principle consists, in most embodiments, in stimulating an ossicle of the middle ear or, directly, the inner ear via mechanical or hydromechanical stimulation and not via the amplified acoustic signal of a conventional hearing aid in which the amplified acoustic signal is supplied to the external auditory canal. The actuator stimulus of these electromechanical systems is accomplished with different physical transducer principles such as, for example, by electromagnetic and piezoelectric systems. The advantage of these devices is seen mainly in the sound quality which is improved compared to conventional hearing aids, and, for totally implanted systems, in the fact that the hearing prosthesis is not visible.
Such partially and totally implantable electromechanical hearing aids have been described, for example, by Yanigahara and Suzuki et al. in Arch Otolaryngol Head Neck, Surg-Vol 113, August 1987, pp. 869-872; Hoke M. (ed.), in Advances in Audiology, Vol. 4, Karger Basel, 1988), H. P. Zenner et al. “First implantations of a totally implantable electronic hearing system for sensorineural hearing loss”, in HNO Vol. 46, 1998, pp. 844-852; H. Leysieffer et al. “A totally implantable hearing device for the treatment of sensorineural hearing loss: TICA LZ 3001”, in HNO Vol. 46, 1998, pp. 853-863; H. P. Zenner et al. “Active electronic hearing implants for patients with conductive and sensorineural hearing loss—a new era of ear surgery” HNO 45, 1997, pp. 749-774; H. P. Zenner et al. “Totally implantable hearing device for sensorineural hearing loss”, The Lancet Vol. 352, No. 9142, page 1751. Such hearing aids are also described in numerous patent documents among others in Published European Patent Applications EP 0 263 254 A1, EP 0 400 630 A1, and EP 0 499 940 A1, and in U.S. Pat. Nos. 3,557,775, 3,712,962, 3,764,748, 5,411,467, 4,352,960, 4,988,333, 5,015,224, 5,015,225, 5,360,388, 5,772,575, 5,814,095, 5,951,601, 5,977,689 and 5,984,859. The insertion of an electromechanical transducer through an opening in the promontory for direct fluid stimulation in the inner ear is described in U.S. Pat. Nos. 5,772,575, 5,951,601, 5,977,689 and 5,984,859.
Recently, partially and fully implantable hearing systems for rehabilitation of inner ear damage have been in clinical use. Depending on the physical principle of the output-side electromechanical transducer, and especially the type of coupling the transducer to the ossicle of the middle ear, it happens that the attained results of improving speech understanding can be very different. In addition, for many patients, a sufficient loudness level cannot be reached. This aspect is spectrally very diverse; this can mean that, at medium and high frequencies, for example, the generated loudness is sufficient, but not at low frequencies, or vice versa. Furthermore the spectral bandwidth which can be transmitted can be limited, thus, for example, to low and medium frequencies for electromagnetic transducers and to medium and high frequencies for piezoelectric transducers. In addition, nonlinear distortions, which are especially pronounced in electromagnetic transducers, can have an adverse effect on the resulting sound quality. The lack of loudness leads especially to the fact that the audiological indication range for implantation of an electromechanical hearing system is very limited. This means that patients, for example, with sensorineural hearing loss of greater than 50 dB ES (hearing loss) in the low tone range can only be inadequately supplied with a piezoelectric system. Conversely, pronounced high tone losses can only be poorly supplied with electromagnetic transducers.
Many patients with inner ear damage also suffer from temporary or permanent noise impressions (tinnitus) which cannot be surgically corrected and for which, to date, there are no approved drug treatments. Therefore, so-called tinnitus maskers (International Patent Application Publication WO-A 90/07251, published European Patent Application EP 0 537 385 A1, German Utility Model No. 296 16 956) are known. These devices are small, battery-driven devices which are worn like a hearing aid behind or in the ear and which, by means of artificial sounds which are emitted into the auditory canal, for example, via a hearing aid speaker, psychoacoustically mask the tinnitus, and thus, reduce the disturbing noise impression, if possible, to below the threshold of perception. The artificial sounds are often narrowband noise (for example, third-band noise). The spectral position and the loudness level of the noise can be adjusted via a programming device to enable adaptation to the individual tinnitus situation as optimally as possible. In addition, the so-called retr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

At least partially implantable hearing system with direct... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with At least partially implantable hearing system with direct..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and At least partially implantable hearing system with direct... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3165347

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.