Asymmetrical siloxy disulfide compounds

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S492000

Reexamination Certificate

active

06300397

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a compound which is useful in rubber compositions and the processing of a sulfur curable rubber composition containing fillers.
BACKGROUND OF THE INVENTION
Sulfur containing organosilicon compounds are useful as reactive coupling agents between rubber and silica fillers providing for improved physical properties. They are also useful as adhesion primers for glass, metals and other substrates.
U.S. Pat. Nos. 3,842,111, 3,873,489 and 3,978,103 disclose the preparation of various sulfur containing organosilicon compounds. These organosilicon compounds are prepared by reacting
(a) 2 moles of a compound of the formula
Z—Alk—hal
where hal is a chlorine, bromine or iodine; Z is
where R
1
is an alkyl of 1 to 4 carbon atoms or phenyl and R
2
is alkoxy of 1 to 8 carbon atoms; or cycloalkoxy of 5 to 8 carbon atoms; or alkylmercapto with 1 to 8 carbon atoms; Alk is a divalent aliphatic hydrocarbon or unsaturated hydrocarbon or a cyclic hydrocarbon containing 1 to 18 carbon atoms; with
(b) 1 mole of a compound of the formula
Me
2
S
n
where Me is ammonium or a metal atom and n is a whole number from 2 to 6.
U.S. Pat. No. 4,820,751 and Japanese Patent Application 124400-1984 disclose the use of an asymmetrical siloxy compound in a silica-filled rubber. Representative asymmetrical siloxy compounds contain a benzothizole moiety or thiocarbamyl moiety.
SUMMARY OF THE INVENTION
The present invention relates to asymmetrical siloxy compounds of the formula:
DETAILED DESCRIPTION OF THE INVENTION
There is also disclosed a method for processing a silica-filled rubber composition which comprises mixing
(i) 100 parts by weight of at least one sulfur vulcanizable elastomer selected from conjugated diene homopolymers and copolymers and from copolymers of at least one conjugated diene and aromatic vinyl compound;
(ii) 10 to 250 phr of particulate precipitated silica;
(iii) 0.05 to 15 phr of a compound of the formula
wherein R
1
, R
2
and R
3
are independently selected from the group consisting of alkoxy radicals having from 1 to 8 carbon atoms; and R
4
is selected from the group consisting of substituted or unsubstituted alkylene groups having from 1 to 18 carbon atoms and arylene and alkyl substituted arylene groups having from 6 to 12 carbon atoms.
In addition, there is disclosed a process for making an asymmetrical siloxy compound comprising reacting (a) N-cyclohexylthiophthalimide; with (b) a mercaptoalkoxysilane compound of the formula
wherein R
1
, R
2
, R
3
and R
4
are as above described.
There is also disclosed a silica-filled rubber composition comprising an elastomer containing olefinic unsaturation, silica and a compound of the formula
wherein R
1
, R
2
and R
3
are independently selected from the group consisting of alkoxy radicals having from 1 to 8 carbon atoms; and R
4
is selected from the group consisting of substituted or unsubstituted alkylene groups having from 1 to 18 carbon atoms and arylene and alkyl substituted arylene groups having from 6 to 12 carbon atoms.
The present invention may be used to process rubbers or elastomers containing olefinic unsaturation. The phrase “rubber or elastomer containing olefinic unsaturation” is intended to include both natural rubber and its various raw and reclaim forms as well as various synthetic rubbers. In the description of this invention, the terms “rubber” and “elastomer” may be used interchangeably, unless otherwise prescribed. The terms “rubber composition”, “compounded rubber” and “rubber compound” are used interchangeably to refer to rubber which has been blended or mixed with various ingredients and materials and such terms are well known to those having skill in the rubber mixing or rubber compounding art. Representative synthetic polymers are the homopolymerization products of butadiene and its homologues and derivatives, for example, methylbutadiene, dimethylbutadiene and pentadiene as well as copolymers such as those formed from butadiene or its homologues or derivatives with other unsaturated monomers. Among the latter are acetylenes, for example, vinyl acetylene; olefins, for example, isobutylene, which copolymerizes with isoprene to form butyl rubber; vinyl compounds, for example, acrylic acid, acrylonitrile (which polymerize with butadiene to form NBR), methacrylic acid and styrene, the latter compound polymerizing with butadiene to form SBR, as well as vinyl esters and various unsaturated aldehydes, ketones and ethers, e.g., acrolein, methyl isopropenyl ketone and vinylethyl ether. Specific examples of synthetic rubbers include neoprene (polychloroprene), polybutadiene (including cis-1,4-polybutadiene), polyisoprene (including cis-1,4-polyisoprene), butyl rubber, styrene/isoprene/butadiene rubber, copolymers of 1,3-butadiene or isoprene with monomers such as styrene, acrylonitrile and methyl methacrylate, as well as ethylene/propylene terpolymers, also known as ethylene/propylene/diene monomer (EPDM), and in particular, ethylene/propylene/dicyclopentadiene terpolymers. The preferred rubber or elastomers are polybutadiene and SBR.
In one aspect the rubber is preferably of at least two of diene based rubbers. For example, a combination of two or more rubbers is preferred such as cis 1,4-polyisoprene rubber (natural or synthetic, although natural is preferred), 3,4-polyisoprene rubber, styrene/isoprene/butadiene rubber, emulsion and solution polymerization derived styrene/butadiene rubbers, cis 1,4-polybutadiene rubbers and emulsion polymerization prepared butadiene/acrylonitrile copolymers.
In one aspect of this invention, an emulsion polymerization derived styrene/butadiene (E-SBR) might be used having a relatively conventional styrene content of about 20 to about 28 percent bound styrene or, for some applications, an E-SBR having a medium to relatively high bound styrene content, namely, a bound styrene content of about 30 to about 45 percent.
The relatively high styrene content of about 30 to about 45 for the E-SBR can be considered beneficial for a purpose of enhancing traction, or skid resistance, of the tire tread. The presence of the E-SBR itself is considered beneficial for a purpose of enhancing processability of the uncured elastomer composition mixture, especially in comparison to a utilization of a solution polymerization prepared SBR (S-SBR).
By emulsion polymerization prepared E-SBR, it is meant that styrene and 1,3-butadiene are copolymerized as an aqueous emulsion. Such are well known to those skilled in such art. The bound styrene content can vary, for example, from about 5 to about 50 percent. In one aspect, the E-SBR may also contain acrylonitrile to form a terpolymer rubber, as E-SBAR, in amounts, for example, of about 2 to about 30 weight percent bound acrylonitrile in the terpolymer.
Emulsion polymerization prepared styrene/butadiene/acrylonitrile copolymer rubbers containing about 2 to about 40 weight percent bound acrylonitrile in the copolymer are also contemplated as diene based rubbers for use in this invention.
The solution polymerization prepared SBR (S-SBR) typically has a bound styrene content in a range of about 5 to about 50, preferably about 9 to about 36, percent. The S-SBR can be conveniently prepared, for example, by organo lithium catalyzation in the presence of an organic hydrocarbon solvent.
A purpose of using S-SBR is for improved tire rolling resistance as a result of lower hysteresis when it is used in a tire tread composition.
The 3,4-polyisoprene rubber (3,4-PI) is considered beneficial for a purpose of enhancing the tire's traction when it is used in a tire tread composition. The 3,4-PI and use thereof is more fully described in U.S. Pat. No. 5,087,668 which is incorporated herein by reference. The Tg refers to the glass transition temperature which can conveniently be determined by a differential scanning calorimeter at a heating rate of 10° C. per minute.
The cis 1,4-polybutadiene rubber (BR) is considered to be beneficial for a purpose of enhancing the tire tread's wear, or treadwear. Such BR can be prep

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Asymmetrical siloxy disulfide compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Asymmetrical siloxy disulfide compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Asymmetrical siloxy disulfide compounds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2589963

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.