Assembly of hollow torque transmitting sucker rods

Pipe joints or couplings – Particular interface – Tapered

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C285S334000, C285S355000, C285S390000

Reexamination Certificate

active

06764108

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an elongated assembly of hollow, torque transmitting pumping rods, used to selectively rotate a rotary pump located deep down hole in an oil well from a drive head located at the surface of the oil well. A pumping rod assembly or sucker rod string is significantly distinguished in the art by the fact that such a string is not typically undergoing substantially free rotation like a drill pipe string, but rather is a true drive shaft that stores large amounts of reactive torque due to its large length, typically between 1,500 to 6,000 feet. The present invention comprises individual elements referred to herein as a “Hollow Sucker Rod” with at least a first end having a female thread and a “Connecting Element” which may be a separate “Nipple Connecting Element” with a pair of male threads or an integral male thread on a second, upset end of a Hollow Sucker Rod.
2. Description of the Related Art
Non-surging oil well extraction is normally achieved by means of pumping systems. The most common system uses an alternating pump located at the bottom of the well driven by a sucker rod string that connects the bottom of the well with the surface, where an alternating pumping machine to drive the string up and down is located. The sucker rods in the prior art, therefore, were designed originally to simply reciprocate up and down, and were are manufactured to API Specification 11B using solid steel bars with an upset end and a threaded end, each thread being of solid cylindrical section. The rods typically were connected one with the other by means of a cylindrical threaded coupling. More efficient pumping is performed when an oil extracting progressive cavity pump (PCP), or like rotary down hole pump is used. Among other advantages, PCP pumping of oil allows for higher oil extraction rates, reduced fatigue loads, reduction in wear on the inside of production tubing, and the ability to pump high viscosity and high solids component oils. PCP pumps are installed at the bottom of the well and driven from the surface by an electric motor connected to a speed-reducing gearbox by means of a string of torque transmitting rods. Traditionally standard API sucker rods are used to drive PCP pumps notwithstanding the fact that these rods have not been designed to transmit torsional loads. The transmission of torque by means of sucker rod strings presents the following disadvantages, i) low torque transmitting capacity, ii) high backspin iii) big stiffness differential between the connection and the rod body, all factors that enhance the possibility of fatigue failures. The reason for rupture on this type of conventional rod is failure due to fatigue in the junction zone of the head of the rod with the body of same due to the difference in structural rigidity between both parts—the body of the rod and the head of the rod.
For a given cross sectional area, torque transmission by a hollow rod with an annular cross section is more efficient than with a narrower, solid circular cross section. With the above mentioned concept in mind the prior art includes a hollow sucker rod that simply uses a standard API external cylindrical thread on a first end connector and an internal API thread on a second end connector, each connector being butt welded to a pipe body, which creates significant and abrupt change in section between the pipe body and each connection body. (See Grade D Hollow Sucker Rod, CPMEC Brochure, undated). The problem of sucker rod string backspin, and details of a drive head at the surface of an oil well and a rotary pump deep down hole in an oil well operation, which is the specific field of invention being addressed herein, can be found in Mills (U.S. Pat. No. 5,551,510), which is incorporated herein by reference.
Various thread and shoulder arrangements are discussed in the prior art with respect to joining together oil well drill pipe, well casing and tubing. See, for example, Pfeiffer et al. (U.S. Pat. No. 4, 955,644); Carstenson (U.S. Pat. No. 5,895,079), Gandy (U.S. Pat. No. 5,906,400), Mithoff (U.S. Pat. No. 262,086), Blose (U.S. Pat. No. 4,600,225), Watts (U.S. Pat. Nos. 5,427,418; 4,813,717; 4,750,761), Schock et al. (U.S. Pat. No. 6,030,004), and Hardy et al. (U.S. Pat. No. 3,054,628). The Watts patents imply that a pre-1986 API standard for strings of casing and tubing was a straight thread, with a turned down collar and that his improvement comprised a flush joint tubular connection with both tapered threads and a shoulder torque. Watts also refer to API standards for tubing and casing where triangular and buttress threads can be used with a torque shoulder. The 1990 patent to Pfeiffer et al, and the 1996 patent to Carstensen et al, in contrast, refer to a more current API standard (truncated triangular thread, connection using a torque shoulder) for strings of casing and tubing that appears to involve frusto-conical threads and shoulders. Carstensen et al at col 7, line 9+ include a discussion about how a particular conical gradient and length of a thread defines stress distribution results. Likewise, Pfeiffer et al at col 2, line 51+ say their threads are tapered and according to “API standards” with their improvement essentially only having to do with transitional dimensions. Hence, the problem addressed by Pfeiffer is an assembly of drill pipe sections where it apparently was critical to use a compatible and standard non-differential thread according to API standards, and also with no incomplete threads and no torque shoulder specification. The main features of the Pfeiffer thread appear to be symmetrical, truncated triangle threads (between 4 and 6 threads per inch, 60° flank angle) and a thread height that is the same for the male and female thread (between 1.42 and 3.75 mm). Also, there is identical nominal taper on male and female ends (between 0.125 and 0.25). Schock et al. illustrate a particular tool joint for drill pipe where the unexpected advantage for drill pipe applications derives from tapered threads that significantly must be very coarse (3½ threads per inch) and have equal angle (75°) thread flanks and elliptical root surfaces.
However, the different problem of backspin inherent in the intermittent operation of a sucker rod string when driving a PCP pump is not apparently addressed in any of these references. The design of the invention was made with certain specific constraints and requirements in mind. First, the minimum diameter of the tubings on the inside of which the Hollow Rods must operate corresponds to API 2⅞″ tubing (inner diameter=62 mm) and API 3½″ tubing (inner diameter=74.2 mm). The oil extraction flow rate must be up to 500 cubic meters per day, maximum oil flow speed must be 4 meters per second. The above-mentioned values strongly restrict the geometry of the rods under design. Second, to ensure a Hollow Rod with a high yield torque so that maximum torque is transmitted to the PCP pump without damage to the Hollow Rod string. Third, to minimize and distribute stresses in the threaded sections. This requirement is met by using a particular conical thread, differential taper, low thread height and a conical bore in the sections under the threads. Fourth, the Hollow Sucker Rod must have good fatigue resistance. Fifth, to ensure low backspin, and high resistance to axial loads. Sixth, ease of make up and break out (assembly of mating threaded parts) must be ensured, and is by a tapered thread. Seventh, to ensure high resistance to unscrewing of the Hollow Sucker Rod due to backspin, or the counter-rotation of a sucker rod string when driving motor stops running and the pump acts as a motor. Eighth, to ensure high resistance to jump out of the Hollow Sucker Rod string (Hollow Rod parting at the threaded sections) by means of adequate thread profile and reverse angle on the torque shoulder. Ninth, to minimize head loss of the fluids that occasionally can be pumped on the inside of the Hollow Sucker Rod throug

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Assembly of hollow torque transmitting sucker rods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Assembly of hollow torque transmitting sucker rods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Assembly of hollow torque transmitting sucker rods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3235816

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.