Assembly for transporting material

Conveyors: power-driven – Conveyor for changing attitude of item relative to conveyed... – By actuating item-holder relative to holder-carrying conveyor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C198S395000, C901S016000

Reexamination Certificate

active

06695120

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to a material handling system, and more particularly, to a controlled system for moving materials to various locations within a manufacturing facility.
2. Description of the Related Art
To remain competitive in the manufacturing industry, manufacturers are constantly seeking out new ways to increase productivity. Advances in technology have helped to increase productivity by providing numerically controlled devices, which allow for the introduction of automated manufacturing equipment. One of the most significant advances in technology for increasing productivity has been the introduction of computers to the manufacturing floor. Computers have made it possible to accurately monitor and track production systems so manufacturers can adapt more quickly to production demands. Computers also facilitate the use of robots. Robots allow for the real-time adaptation of the manufacturing environment to the demands of the production process. Generally, robots are used to transport materials around a factory floor to deliver items to, and remove items from, various process tools.
Robots require some way to present parts or material to and from the various types of processing equipment which they service. For example, one of the most common material transport systems, is an overhead lift system. In this example, the overhead lift system uses a platform suspended by suspension mechanisms, such as ropes, cables, wires, chains, belts, and the like, which are reeled up or down to raise or lower the platform. Unfortunately, in this system the ability to pick or place material at a given point is greatly limited due to lack of positional control of the material when the system lowers it due to side swaying and/or twisting. Also, the suspended transport system typically requires that the suspension mechanisms be reeled up and/or down, in unison, at the same rate, to prevent tilting of the carrier platform. This Requirement usually only met using carefully designed spooling mechanisms or other complex components. Further, most suspended transport systems fail to provide off-axis loading, which limits their usefulness.
An inline tool system for the automatic processing and/or automatic treatment of materials is yet another example of a common type of material transport system.
FIGS. 1A and 1B
are illustrations of a perspective and side view, respectively, of the inline system, which may include front-of-line (FOL) and/or back-of-line (BOL) tools. The FOL and BOL tools are used to treat and/or process semiconductor chips. The chips are typically contained in magazines M when they are transported. The magazines M are fed to the tools and prepared therein for processing or treatment and also for transporting away after the processing or treatment.
Arranged behind the line of tools, is a rail device T, on which runs a robot R, which grips, moves, positions and releases the magazines M as required. As shown in
FIG. 1B
, the mounting robot R travels rectilinearly and horizontally on the rail device T. A gripper G for the magazine M is supported movably on the mounting robot R by means of an advancing carriage V and a lifting carriage H. The advancing carriage V is movable on the mounting robot R horizontally and orthogonally to the rail device T towards one of the tools and away from it. The lifting carriage H is movable vertically on the advancing carriage V. Consequently, the gripper G can be moved with three Cartesian degrees of freedom or directions of movement with respect to the tools in order to bring the magazine M to the intended magazine position at the tool and unload it there, or to grip it there and lead it away.
The drawbacks to the above-described system are many. Foremost, as illustrated in
FIG. 1B
, rail device T of the inline system can require two feet or more of floor space, which can present a total space penalty of up to 30% on most factory floors. If the floor space includes clean room floor space, the cost associated with such a floor space penalty can be dramatically increased. Moreover, the inline system is not flexible in routing so that service can only be provided along a straight path.
The modern factory uses many different types of processing tools and equipment, some of which can be older existing equipment (i.e., legacy equipment), which may not be designed for the inline system of loading (e.g., rear loading). Instead, most legacy equipment is designed for front loading, typically via a loading chute. Thus, another drawback of most typical transport systems is that they are designed for rear loading and are thus not capable of chute loading. Most transport systems are also typically not flexible enough to support cell-to-cell transport or functional layout. Consequently, to implement a modern transport system in an existing factory may require the buying of new equipment and/or the making of expensive factory and equipment modifications.
For the above reasons, what is needed is a material transport system which can transport materials from one processing station or tool to another, in a rigid and controlled-manner, while having flexibility in routing, and compactability for efficient space utilization.
SUMMARY OF THE INVENTION
The present invention provides a controlled material transport system (MTS) for carrying materials to and from, for example, work stations, test equipment, and processing and assembly tools in a common facility. The system of the present invention can deliver and/or remove material or payloads (e.g., semiconductor chips carried in magazines) directly to and/or from processing and assembly tools using a highly integrated vehicle running on a simple passive track system. The MTS of the present invention can load/unload magazines from any processing tool that can be serviced vertically from above.
The MTS of the present invention includes a rigid robot vehicle mountable to the passive track system, which can be routed to service all processing tools on the factory floor. The robot vehicle can handle and transport the magazines in much the same manner as an operator, which facilitates the loading of the processing tools and processing tool chutes without requiring modification to the processing tools. The MTS includes a hoist assembly and gripper assembly, which together perform such functions as picking up magazines, placing magazines, and loading magazines into the processing tools.
Advantageously, the hoist assembly is capable of functioning in an operational envelope, which includes any target location within a 3-axis Cartesian coordinate system, to the extent of the range of motion of the hoist assembly. The hoist assembly also provides rigid and controlled z-axis travel (i.e. vertical), while being compact when retracted. The compactness of the retracted hoist assembly improves factory space utilization and permits use of the MTS in low-ceiling environments. The gripper assembly facilitates loading of the magazines, especially chute style magazines, which are commonly found on many existing processing tools.
The control responsibilities for the MTS are divided into two distinct functions. The MTS controller (MTSC) manages the scheduling of the vehicle actions while the vehicle controller (VC) controls the actions of the vehicle. The interface between the MTSC and the VC may be wireless, for example, through RF or IR communication links. Power rails in the tracks provide power to the vehicle.
In one aspect of the present invention, an assembly is provided for transporting a payload. The assembly includes a support frame, which supports a first linear slide mechanism. The first linear slide mechanism includes a plurality of slidably linked members. Also supported on the support frame is a spooling mechanism for causing the linear slide mechanism to operate to move a payload in a vertical direction. Advantageously, the support frame can include a second linear slide mechanism, which is operative for moving the payload in a horizontal direction.
The ass

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Assembly for transporting material does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Assembly for transporting material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Assembly for transporting material will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3308364

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.