Assembly for enclosing and protecting a plurality of meters...

Horizontally supported planar surfaces – Industrial platform – Formed from folded semirigid material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06823803

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to assemblies for enclosing and protecting a plurality of meters for storage or transportation purposes and carriers and pallets for use therein.
2. Background Art
It is desirable to protect meters such as utility meters while they are being stored or transported. Such meters may be new, used or reconditioned. It is further desirable to hold the meter in place while offering protection for safer shipping, handling and storing such meters.
U.S. Pat. No. 5,503,271 discloses an electric meter case for enclosing and protecting a single electric meter. However, the prior art fails to provide apparatus or assemblies for enclosing and protecting a plurality of meters for storing or transportation purposes. Since a typical electrical utility meter weighs approximately 4-6 lbs., such an assembly or apparatus should be capable of enclosing and protecting a load that can quickly add up.
Sandwich-type materials having cellular cores have very important characteristics resulting from their being light in weight yet very rigid.
Conventionally, such a panel is constructed by sandwiching a cellular core having low strength characteristics by gluing it or bonding it between two skins, each of which is much thinner than the cellular core but has excellent mechanical characteristics.
The patent document FR 2 711 573 discloses a method of making a panel of sandwich-type composite structure having a cellular core. In that method, said panel is made in a single step by subjecting a stack to cold-pressing in a mold, which stack is made up of at least a first skin made of a stampable reinforced thermoplastics material, of a cellular core made of a thermoplastics material, of a second skin made of a stampable reinforced thermoplastics material, and of a first external covering layer made of a woven or non-woven material, the skins being preheated outside the mold to a softening temperature.
Such a method is particularly advantageous because of the fact that it makes it possible, in a single operation, both to generate cohesion between the various layers of the composite structure, and to shape the panel.
The resulting panel conserves all of the mechanical properties imparted by the cellular core sandwich structure.
European patent EP 0 649 736 B1 explains the principle of molding substantially flat parts out of thermoplastic sandwich material (TSM). The part is made in a single stage by pressing in a cold mold, at a pressure in the range of 10 bars to 30 bars, a stack consisting of at least a first top skin layer of stampable reinforced thermoplastics material, a cellular or honeycomb core of thermoplastics material and a second bottom skin layer of stampable reinforced thermoplastics material. The axes of the cells of the cellular core are generally oriented perpendicular to the skin layers. The skin layers and core are previously heated outside the mold to a softening temperature. Such sandwich material is also described in U.S. Pat. No. 5,683,782. The cellular core of such material enables the part to be very rigid while being light in weight.
U.S. Pat. No. 6,050,630 discloses a molded composite stack including a cellular core for a vehicle and a mold for forming the stack into a vehicular part, such as a floor panel.
Panels of sandwich-type composite structures having a cellular core have strength characteristics sufficient to enable mechanical structures subjected to large stresses to be reinforced structurally without making them too heavy. Such panels are in common use in shipbuilding, aircraft construction, and rail vehicle construction.
However, the non-uniformness of the mechanical stresses to which they are subjected sometimes makes it necessary to form local reinforcing plies at those places in said panels where the mechanical stresses are greatest.
In the field of aircraft construction, sandwich structure composite panels are made that are based on thermosettable resins reinforced with glass fibers.
In order to impart the desired shapes to the panels, and to maintain the shapes, the glass fibers and the thermosettable resin (in the form of pre-impregnates) are deposited layer-by-layer in a mold, and are then heated to high temperatures so as to cure (i.e. polymerize) the resin permanently.
The molds used may have a punch or a die, or else both a punch and a die.
Making such locally-reinforced panels consists firstly in defining zones where stresses are concentrated in the resulting panels, such zones being defined either by real testing or by computer simulation, and then in adding reinforcing plies at those places so as to make it possible to withstand such stresses.
The reinforcing plies are one-directional mats or woven fabrics of glass fibers, of carbon fibers, or of natural fibers embedded in a thermosettable resin, with an orientation that is determined by the orientation of the stresses. They are cut out to a pattern using special machines, e.g. water-jet cutting machines.
The reinforcing plies are disposed layer-by-layer in a mold, either manually or by means of a robot, with each ply having its own orientation.
That operation may be referred to as the “laying up” operation.
Then comes the baking step which is the longest step of the method of making such pieces because the stack of layers must be heated sufficiently to cure the thermosettable resin.
The various layers disposed in the mold are pressed in the mold by evacuating the mold. Such evacuation serves to press the materials against the die or the punch, and to remove surplus resin.
The desired shape is thus obtained with the fibers being impregnated with the resin as well as possible.
That “lamination” technique, and in particular the “laying up” operation, is characterized by a very low level of automation, and a large labor input.
Although, by means of the concept of localizing the strength, that technique makes it possible to achieve performance levels that are high for the pieces that are made in that way, it requires rigorous monitoring of quality.
As a result, that technique is very costly and cannot be used at the high production throughputs implemented in many fields such as the automobile industry.
Generally, plastic pallets can be easily molded and are lighter in weight than wooden pallets. Furthermore, in general, plastic pallets are more durable than wooden pallets as shown in U.S. Pat. No. 5,497,709.
Plastics processing technology has enjoyed significant recent advances, such that traditional high-strength materials such as metals are being replaced with fiber composite materials. These materials are not only light, but also are flexible and durable.
U.S. Pat. Nos. 5,891,560 and 6,165,604 disclose fiber-reinforced composites prepared from a depolymerizable and repolymerizable polymer having the processing advantages of a thermoset without being brittle. Impregnation of polymer into the fiber bundle is achieved, while still producing a composite with desirable physical properties and high damage tolerance.
One factor that has limited the number of plastic pallets is that plastic pallets require a given amount of relatively expensive plastic material for a desired measure of pallet strength. U.S. Pat. Nos. 5,868,080 and 6,199,488 disclose reinforced plastic pallet constructions and assembly methods wherein multiple reinforcing bars are employed. The reinforcing bars preferably comprise composite structural members of fiberglass reinforced thermosetting plastic fabricated from a pultrusion process.
As noted in the above-mentioned '560 and '604 patents, although thermoset composites have excellent mechanical properties, they suffer from several disadvantages: thermoset matrices have relatively limited elongation, the thermoset precursors are a source of undesirable volatile organic compounds (VOCs), the composites cannot be reshaped or recycled, and their production rates are limited.
Consequently, in principle at least, thermoplastic composites would solve many of the problems associated with thermosets. For example, unlike th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Assembly for enclosing and protecting a plurality of meters... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Assembly for enclosing and protecting a plurality of meters..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Assembly for enclosing and protecting a plurality of meters... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3289842

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.