Ammunition and explosive-charge making – Bomb disposal
Reexamination Certificate
2000-05-03
2002-11-26
Tudor, Harold J. (Department: 3641)
Ammunition and explosive-charge making
Bomb disposal
C102S293000, C102S200000, C089S001130, C588S253000
Reexamination Certificate
active
06484617
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an assembly and process for effecting demining operations, and in particular to an assembly and process for at least partially consuming the explosive within a landmine in a controlled and stable manner so that detonation of the explosive is avoided or reduced in magnitude.
2. Description of the Related Art
Since the development of landmines in World War I, landmines have found widespread military use as an effective deterrent to the advancement of enemy group troops during war time. For this purpose, anti-personnel landmines and anti-tank landmines are both known. Although the number of landmines currently actively used in the United States is negligible, landmines are quite abundant in many foreign countries. There are many currently active military conflicts for which landmines are being produced and planted. Additionally, in many parts of the world in which military conflicts have been resolved and landmines are no longer needed for military operations, the landmines nonetheless remain planted, active, and often forgotten. Oftentimes the landmines are not demined as the result of neglect or indifference over humanitarian concerns; sometimes a conscious decision is made not to demine based on factors such as the expense and hazards associated with demining operations.
It has been estimated that there are over 80 million active landmines scattered around the world in approximately 70 countries. Every month, these landmines are responsible for killing or maiming over 2000 people, most of whom are civilian casualties injured by the accidental triggering of landmines well after hostilities have ceased.
To date, humanitarian efforts to demine planted landmines in order to protect civilian interests have not been sufficiently effective. It has been estimated that for every land mine cleared, twenty are planted in its place. In 1994, approximately 100,000 landmines were demined, while an additional 2 million were planted. Moreover, there is a stockpile of landmines around the world that equals if not exceeds the number of active planted landmines.
One of the principle reasons, if not the principle reason, that the proliferation and planting of new land mines has outpaced current demining efforts is the relatively high cost and complexity of current demining devices. The high cost and complexity that characterizes current demining devices make the conventional devices impractical for use in third world countries, where landmines are most prevalent. Third world countries are often unable to both afford conventional demining devices and find or afford adequately skilled personnel for operating the complex conventional demining devices.
Another problem which characterizes conventional demining devices is that the conventional demining devices accomplish their demining objective by the detonation of active landmines. For example, vehicle-driven plowing apparatuses for clearing minefields and detonating landmines are disclosed in, by way of example, U.S. Pat. Nos. 4,773,298, 5,189,243, 5,794,709, and 5,844,160. Other devices, uch as that disclosed in U.S. Pat. No. 5,458,063, rely on the generation of a agnetic field to initiate and detonate a magnetic influenced mine. U.S. Pat. No. 4,008,644 discloses a vehicle-driven apparatus equipped with a plurality of rocket motor engines constructed and arranged to clear landmines and detonate the landmines with streams of high velocity gases exhausted from the rocket motor engines. It is also known to use C-4 to explode landmines. However, these devices operate by effecting the violent detonation of active landmines, which presents safety hazards, including the potential for collateral damage as well as scattering of debris that may further complicate location and neutralization of other landmines.
It has been proposed that the above-discussed problems could be addressed by using conventional road-side flares for effecting the controlled neutralization of landmines. Generally, road-side flares are characterized by their generation of mostly solid effluents and are available in high quantities and at low expense. However, road-side flares exhibit high variability in performance when tested on different types of landmines and landmine cases. As a consequence, the use of road-side flares in controlled demining operations has been limited.
SUMMARY OF THE INVENTION
It is, therefore, an object of this invention to satisfy a significant need in the art for a demining assembly that is sufficiently inexpensive and simple to operate to permit its widespread use in third world countries incapable of affording large quantities of conventional demining devices or lacking sophisticated and trained personnel to operate conventional demining devices, yet also permits for the safe and controlled neutralization of a wide variety of landmines by effecting the burning, instead of detonating, of the landmine explosive charge.
In accordance with the principles of this invention, these and other objects are satisfied by the provision of an assembly and process designed to neutralize a landmine by burning through the landmine case and subsequently initiating burning of the explosive charge within the case. The initiation of the explosive charge burning is conducted in a controlled manner so that detonation of the explosive charge commonly either is avoided by initiating the controlled burning of all of the explosive charge to leave the landmine case empty or is substantially reduced and less violent due to burning of a significant portion, but less than all, of the explosive charge prior to detonation.
According to one embodiment of the invention, the assembly comprises a housing (or case) defining a chamber and having opposite first and second ends, the first end being open to communicate the chamber with the atmosphere outside of the housing and the second end preferably being sealed. Loaded within the chamber is a solid propellant. The assembly further includes an igniter remotely operable, be it by electronic device, timing fuse, or other remotely operable igniter that permits ignition of the solid propellant from a safe distance. Optionally, the assembly may further include a stand for maintaining the solid propellant charge a fixed distance (or clearance) away from the landmine case.
The housing is designed, e.g., without a throat portion, and the solid propellant is present in an amount and possesses a suitable design and composition for generating, upon ignition of the solid propellant, a plume sufficient in burn time duration and temperature to penetrate through the case of the landmine positioned in spaced relation to the first end and initiate controlled burning of the explosive charge of the landmine. Once controlled burning of the explosive charge commences, the firing of the solid propellant may be terminated by consumption of the propellant or otherwise. The explosive charge of the landmine is self-deflagrating, meaning that the explosive charge will continue to burn, preferably without detonation, until completely consumed. However, complete consumption of the explosive charge via burning cannot always be assured, since heat build up within the landmine case can cause inadvertent detonation of the explosive charge in some cases. Thus, sometimes detonation of the explosive charge is reduced in degree, rather than completely avoided, due to the pre-detonation partial consumption of the explosive charge by burning. Preferably, the solid propellant is of the type suitable for use in rocket motors, such as reusable solid rocket motors and other solid rocket motors.
The low cost of suitable solid propellants, housings, and igniters of the assemblies make the demining assembly sufficiently inexpensive for widespread use in third world countries incapable of affording large quantities of conventional demining devices, thereby contributing to realization of one of the objects of this invention. Further, the wide availability of ignition devices that are easily operated with minimal i
Anderson Richard C.
Ciccarelli Robert D.
Cragun Richard B.
Crilly Michael G.
Delaney, Jr. John E.
Alliant Techsystems Inc.
Tudor Harold J.
LandOfFree
Assembly and process for controlled burning of landmine... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Assembly and process for controlled burning of landmine..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Assembly and process for controlled burning of landmine... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2986234