Assays for the detection of microtubule depolymerization...

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S004000

Reexamination Certificate

active

06699969

ABSTRACT:

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
[Not Applicable ]
FIELD OF THE INVENTION
This invention relates assay for agents that modulate (e.g. upregulate, downregulate or completely inhibit) microtubule depolymerizing or microtubule severing proteins. Such agents will have profound effects on progression of the cell cycle and act as potent anti-mitotic agents.
BACKGROUND OF THE INVENTION
The cytoskeleton constitutes a large family of proteins that are involved in many critical processes of biology, such as chromosome and cell division, cell motility and intracellular transport. Vale and Kreis, 1993,
Guidebook to the Cytoskeletal and Motor Proteins
New York: Oxford University Press; Alberts et al., (1994)
Molecular Biology of the Cell,
788-858). Cytoskeletal proteins are found in all cells and are involved in the pathogenesis of a large range of clinical diseases. The cytoskeleton includes a collection of polymer proteins, microtubules, actin, intermediate filaments, and septins, as well as a wide variety of proteins that bind to these polymers (polymer-interacting proteins) Some of the polymer-interacting proteins are molecular motors (myosins, kinesins, dyneins) (Goldstein (1993)
Ann. Rev. Genetics
27: 319-351; Mooseker and Cheney (1995)
Annu. Rev. Cell Biol.
11: 633-675) that are essential for transporting material within cells (e.g., chromosomal movement during metaphase), for muscle contraction, and for cell migration. Other groups of proteins (e.g., vinculin, talin and alpha-actinin) link different filaments, connect the cytoskeleton to the plasma membrane, control the assembly and disassembly of the cytoskeletal polymers, and moderate the organization of the polymers within cells.
Given the central role of the cytoskeleton in cell division, cell migration, inflammation, and fungal/parasitic life cycles, it is a fertile system for drug discovery. Although much is known about the molecular and structural properties of cytoskeletal components, relatively little is known about how to efficiently manipulate cytoskeletal structure and function. Such manipulation requires the discovery and development of specific compounds that can predictably and safely alter cytoskeletal structure and function. However, at present, drug targets in the cytoskeleton have been relatively untapped. Extensive work has been directed towards drugs that interact with the cytoskeletal polymers themselves (e.g., taxol and vincristine), and towards motility assays. Turner et al. (1996)
Anal. Biochem.
242 (1): 20-5; Gittes et al. (1996)
Biophys. J.
70 (1): 418-29; Shirakawa (1995)
J. Exp. Biol.
198: 1809-15; Winkelmann et al. (1995)
Biophys. J.
68: 2444-53; Winkelmann et al. (1995)
Biophys. J.
68: 72S. Virtually no effort has been directed to finding drugs that target the cytoskeletal proteins that bind to the different filaments, which might be more specific targets with fewer unwanted side effects.
SUMMARY OF THE INVENTION
This invention pertains to the discovery that proteins (e.g. motor proteins) that either depolymerize or sever microtubules, provide good targets for modulators of such activity. Without being bound by a particular theory, it is believed that microtubule depolymerizing or severing activity is critical for normal formation and/or function of the mitotic spindle. Thus, agents that modulate (e.g., upregulate, downregulate, or completely inhibit) depolymerization or severing activity are expected to have a significant activity on progression of the cell cycle (e.g. acting as potent anti-mitotic agents).
*This invention thus provides, in one embodiment, assays for identifying an agent that modulates microtubule depolymerization. The assays involve contacting a polymerized microtubule with a microtubule severing protein or a microtubule depolymerizing protein in the presence of an ATP or a GTP and the “test” agent; and detecting the formation of tubulin monomers, dimers or oligomers. The microtubule can be labeled with any of a variety of labels, however in a preferred embodiment, it is labeled with DAPI. The formation of tubulin monomers, dimers, or oligomers can be detected by any of a wide variety of methods including, but not limited to changes in DAPI fluorescence, fluorescent resonance energy transfer (FRET), centrifugation, and the like. The microtubules are preferably microtubules that are either naturally stable (e.g. axonemal microtubules) or microtubules that have been stabilized e.g. by contact with an agent such as paclitaxel, a paclitaxel analogue, or a non-hydrolyzable nucleotide GTP analogue.(e.g., guanylyl-(&agr;,&bgr;)-methylene diphosphate (GMPCPP)).
The assays can be run in solution or in solid phase (i.e. where one or more assay components are attached to a solid surface. In one embodiment, of solid-phase assays, the microtubule is attached to the surface e.g. by direct binding or by binding with an agent such as an inactivated microtubule motor protein, an avidin-biotin linkage, an anti-tubulin antibody, a microtubule binding protein (MAP), or a polylysine. The microtubule severing protein or microtubule depolymerizing protein is preferably a katanin, a p60 subunit of a katanin, an XKCM1, or an OP18 polypeptide. In a particularly preferred embodiment, the microtubule severing protein is a katanin or a p60 subunit of a katanin as described herein.
It was also a discovery of this invention that the katanin p60 subunit exhibits both the ATPase and microtubule severing activity observed in katanin. The p60 subunit thus provides a good target for screening for potential therapeutic lead compounds Thus, in another embodiment, this invention provides methods screening for (identifying) a therapeutic lead compound that modulates depolymerization or severing of a microtubule system. The methods involve providing an assay mixture comprising a katanin p60 subunit and a microtubule, contacting the assay mixture with a test compound to be screened for the ability to inhibit or enhance the microtubule-severing or ATPase activity of the p60 subunit; and detecting specific binding of the test compound to said p60 subunit or a change in the ATPase activity of the p60 subunit. The detecting can be by any of a wide variety of methods including, but not limited to detecting ATPase activity using malachite green as a detection reagent. Binding activity can be easily detected in binding assays in which the p60 subunit is labeled and said test agent is attached to a solid support or conversely, the test agent is labeled and the p60 subunit is attached to a solid support. In a preferred embodiment, the ATPase assays are performed in the presence of stabilized microtubules.
The assay methods of this invention are also amendable to high throughput screening. Thus, in one embodiment, any of the methods described herein is performed in an array where said array comprises a multiplicity of reaction mixtures, each reaction mixture comprising a distinct and distinguishable domain of said array, and wherein the assay steps are performed in each reaction mixture. The array can take a number of formats, however, in one preferred format, the array comprises a microtitre plate, preferably a microtitre plate comprising at least 48 and more preferably at least 96 reaction mixtures. The test agent can be one of a plurality of agents and each reaction mixture can comprises one agent of the plurality of agents.
In addition, this invention provides for polypeptides having microtubule severing activity. The polypeptides comprise an isolated p60 subunit of a katanin, where the p60 subunit is encoded by a nucleic acid that hybridizes under stringent conditions with a nucleic acid that encodes the katanin p60 amino acid sequence (SEQ ID NO: 1). In a particularly preferred embodiment, the polypeptide is the polypeptide of SEQ ID NO: 1 or the polypeptide of SEQ ID NO: 1 having conservative substitutions. The polypeptide can comprise at least 8 contiguous amino acids from a polypeptide sequence encoded by a nucleic acid as set forth in S

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Assays for the detection of microtubule depolymerization... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Assays for the detection of microtubule depolymerization..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Assays for the detection of microtubule depolymerization... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3225544

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.