Assay kits for detection and methods of inhibiting IL-17...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007200, C435S007210, C435S007800, C435S004000, C436S501000

Reexamination Certificate

active

06197525

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to the field of cytokine receptors, and more specifically to cytokine receptor proteins having immunoregulatory activity.
BACKGROUND OF THE INVENTION
Cytokines are hormone-like molecules that regulate various aspects of an immune or inflammatory response. Cytokines exert their effects by specifically binding receptors present on cells, and transducing a signal to the cells. Rouvier et al. (
J. Immunol.
150:5445; 1993) reported a novel cDNA which they termed CTLA-8. The putative CTLA8 protein is 57% homologous to the predicted amino acid sequence of an open reading frame (ORF) present in Herpesvirus saimiri (HSV) referred to as HVS13 (Nicholas et al.
Virol.
179:1 89, 1990; Albrecht et al.,
J. Virol.
66:5047;1992). However, the function, if any of either CTLA-8 or HVS13 was not known, nor was a receptor or binding protein for CTLA-8 or HVS13 known. Thus, prior to the present invention, there was a need in the art to determine the function of CTLA-8 and HVS13, and to identify receptor molecules or binding proteins that play a role in the function of these proteins.
SUMMARY OF THE INVENTION
The present invention identifies a novel receptor that binds IL-17 (CTLA-8) and HVS13, a viral homolog of IL-17; DNAs encoding the novel receptor and novel receptor proteins are provided. The receptor is a Type I transmembrane protein; the mouse receptor has 864 amino acid residues, the human receptor has 866 amino acid residues. Soluble forms of the receptor can be prepared and used to regulate immune responses in a therapeutic setting; accordingly, pharmaceutical compositions comprising soluble forms of the novel receptor are also provided. Deleted forms and fusion proteins comprising the novel receptor, and homologs thereof are also disclosed. Also provided are methods of regulating an immune response, and methods of suppressing rejection of grafted organs or tissue. These and other aspects of the present invention will become evident upon reference to the following detailed description of the invention.
DETAILED DESCRIPTION OF THE INVENTION
A soluble IL-17 (CTLA-8) protein and an ORF present in Herpesvirus saimiri (HVS13) were expressed as fusion proteins comprising an immunoglobulin Fc region, and used to screen cells for expression of a receptor for IL-17. T cell thymoma EL4 cells were found to bind the HVS13/Fc as well as murine CTLA8 (IL-17)/Fc fusion protein. A cDNA library from EL4 cells was prepared and screened for expression of the receptor. The receptor is a Type I transmembrane protein with 864 amino acid residues, which is referred to as IL-17R (CTLA-8R). Various forms of IL-17R were prepared, including IL-17R/Fc protein, a soluble IL-17R which contains the signal peptide and extracellular domain of IL-17R, and a soluble IL-17R/Flag® construct. A human IL-17R was isolated from a human peripheral blood lymphocyte library by cross-species hybridization, and exhibits similarities to the murine IL-17R.
IL-17, HVS13 and homologous proteins
CTLA-8 refers to a cDNA cloned from an activated T cell hybridoma clone (Rouvier et al.,
J. Immunol.
150:5445; 1993). Northern blot analysis indicated that CTLA-8 transcription was very tissue specific. The CTLA-8 gene was found to map at chromosomal site 1a in mice, and at 2q31 in humans. Although a protein encoded by the CTLA-8 gene was never identified by Rouvier et al, the predicted amino acid sequence of CTLA-8 was found to be 57% homologous to the predicted amino acid sequence of an ORF present in Herpesvirus Saimiri, HVS13. The CTLA-8 protein is referred to herein as Interleukin-17 (IL-17).
The complete nucleotide sequence of the genome of HVS has been reported (Albrecht et al.,
J. Virol.
66:5047; 1992). Additional studies on one of the HVS open reading frames (ORFs), HVS13, are described in Nicholas et al.,
Virol.
179:1 89; 1990. HVS13 is a late gene which is present in the Hind III-G fragment of HVS. Antisera developed against peptides derived from HVS13 are believed to react with a late protein (Nicholas et al., supra).
As described U.S. Ser. No. 08/462,353, a CIP of U.S. Ser. No. 08/410,536, filed Mar. 23, 1995, full length murine CTLA-8 protein and a CTLA-8/Fc fusion protein were expressed, tested, and found to act as a costimulus for the proliferation of T cells. Human IL-17 (CTLA-8) was identified by probing a human T cell library using a DNA fragment derived from degenerate PCR; homologs of IL-17 (CTLA-8) are expected to exist in other species as well. A full length HVS13 protein, as well as an HVS13/Fc fusion protein, were also expressed, and found to act in a similar manner to IL-17 (CTLA-8) protein, Moreover, other species of herpesviruses are also likely to encode proteins homologous to that encoded by HVS13.
Proteins and Analogs
The present invention provides isolated IL-17R and homologs thereof having immunoregulatory activity. Such proteins are substantially free of contaminating endogenous materials and, optionally, without associated native-pattern glycosylation. Derivatives of IL-17R within the scope of the invention also include various structural forms of the primary protein which retain biological activity. Due to the presence of ionizable amino and carboxyl groups, for example, an IL-17R protein may be in the form of acidic or basic salts, or may be in neutral form. Individual amino acid residues may also be modified by oxidation or reduction.
The primary amino acid structure may be modified by forming covalent or aggregative conjugates with other chemical moieties, such as glycosyl groups, lipids, phosphate, acetyl groups and the like, or by creating amino acid sequence mutants. Covalent derivatives are prepared by linking particular functional groups to amino acid side chains or at the N- or C-termini.
Soluble forms of IL-17R are also within the scope of the invention. The nucleotide and predicted amino acid sequence of the murine IL-17R is shown in SEQ ID NOs:1 and 2. Computer analysis indicated that the protein has an N-terminal signal peptide with a cleavage site between amino acid 31 and 32. Those skilled in the art will recognize that the actual cleavage site may be different than that predicted by computer analysis. Thus, the N-terminal amino acid of the cleaved peptide is expected to be within about five amino acids on either side of the predicted cleavage site. The signal peptide is followed by a 291 amino acid extracellular domain, a 21 amino acid transmembrane domain, and a 521 amino acid cytoplasmic tail. Soluble IL-17R comprises the signal peptide and the extracellular domain (residues 1 to 322 of SEQ ID NO:1) or a fragment thereof. Alternatively, a different signal peptide can be substituted for residues 1 through 31 of SEQ ID NO:1.
The nucleotide and predicted amino acid sequence of the human IL-17R is shown in SEQ ID NOs:9 and 10. It shares many features with the murine IL-17 R. Computer analysis indicated that the protein has an N-terminal signal peptide with a cleavage site between amino acid 27 and 28. Those skilled in the art will recognize that the actual cleavage site may be different than that predicted by computer analysis. Thus, the N-terminal amino acid of the cleaved peptide is expected to be within about five amino acids on either side of the predicted cleavage site. The signal peptide is followed by a 293 amino acid extracellular domain, a 21 amino acid transmembrane domain, and a 525 amino acid cytoplasmic tail. Soluble IL-17R comprises the signal peptide and the extracellular domain (residues 1 to 320 of SEQ ID NO:1) or a fragment thereof. Alternatively, a different signal peptide can be substituted for the native signal peptide.
Other derivatives of the IL-17R protein and homologs thereof within the scope of this invention include covalent or aggregative conjugates of the protein or its fragments with other proteins or polypeptides, such as by synthesis in recombinant culture as N-terminal or C-terminal fusions. For example, the conjugated peptide may be a signal (or leader) polypeptide sequence at the N

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Assay kits for detection and methods of inhibiting IL-17... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Assay kits for detection and methods of inhibiting IL-17..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Assay kits for detection and methods of inhibiting IL-17... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2443089

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.