Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Ester doai
Reexamination Certificate
2001-02-16
2003-12-30
Rotman, Alan L. (Department: 1625)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Ester doai
C562S400000, C562S512000, C562S579000
Reexamination Certificate
active
06670396
ABSTRACT:
BACKGROUND
Numerous reports of the past 25 years suggest that supplementation of dietary omega-3 polyunsaturated fatty acids (w-3 PUFA) with linseed, canola, or fish oils has beneficial effects in human discases and laboratory animals (1. De Caterina, R., S. Endres, S. D. Kristensen, and E. B. Schmidt, editors. 1993. n-3
Fatty Acids and Vascular Disease.
Springer-Verlag, London and 2. Lands, W. E. M., editor. 1987.
Proceedings of the AOCS Short Course on Polyunsaturated Fatty Acids and Eicosanoids.
American Oil Chemists' Society, Champaign, Ill.). These have included lively discussions of potential antithrombotic, immunoregulatory, and antiinflammatory responses relevant in arteriosclerosis, arthritis, and asthma as well as antitumor and antimetastratie effects (Ref. 1 and Iigo, M., T. Nakagawa, C. Ishikawa, Y. Iwahori, M. Asamoto, K. Yazawa, E. Araki, and H. Tsuda. 1997. Inhibitory effects of docosahexaenoic acid on colon carcinoma 26 metastasis to the lung.
Br. J. Cancer
75:650-655.). Their potential for preventative actions in cardiovascular diseases was recently bolstered with the finding that major dietary &ohgr;-3 PUFAs, eicosapentaenoic acid (C20:5 &ohgr;-3; EPA) and docosahexaenoic acid (C22:6 &ohgr;-3; DHA), have a dramatic effect on ischemia-induced ventricular fibrillation and can protect against sudden cardiac death in dogs (4. Billman, G. E. et al. 1999 Prevention of sudden cardiac death by dietary pure &ohgr;-3 polyunsaturated fatty acids in dogs.
Circulation.
99:2452-2547.). Emergence of such possible preventative and/or therapeutic actions of &ohgr;-3 PUFA supplementation in infant nutrition, cardiovascular diseases, and mental health has led to a call for recommended dietary intakes by an international workshop (5. Simopoulous, A. P. et al. 1999. Workshop on the Essentiality of and Recommended Dietary Intakes for Omega-6 and Omega-3 Fatty Acids.
J. Am. Coll. Nutr.
18:487-489.). Also, the Gruppo Italiano per lo Studio della Sopravvivense nell'Infarto Miocardio (GISSI) Prevenzione trial evaluated the effects of &ohgr;-3 PUFA supplementation with >11,300 patients surviving myocardial infarction taking ~1 g of &ohgr;-3 PUFA daily (n=2,836) along with recommended preventive treatments including aspirin, and reported a significant benefit with a decrease in cardiovascular death (6. Marchioloi, R. 1999. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Ifarto miocardioco.
Lancet.
354:447-455.). However, the cellular and molecular mechanism(s) for dietary &ohgr;-3 protective actions in all of the studies including those with neural tissues (Parkinson's disease and Alzheimer's disease and other known to involve inflammation in the brain) to date remain largely unexplained.
It is believed that the actions of the major lipid of fish oil, C20:5, are based upon (a) preventing conversion of arachidonic acid (C20:4 &ohgr;-6; AA) to proinflammatory eicosanoids (i.e. prostaglandins [PGs] and leukotrienes [LTS]); (b) serving as an alternate substrate producing 5-series LTS that are less potent; and/or (c) conversion by cyclooxygenase (COX) to 3-series prostanoids (i.e., PGI
3
) with potencies equivalent to their 4-series PG counterparts to maintain antithrombotic actions (References 1, 3 and 4). These and other explanations offered have not been generally accepted because of the lack of molecular evidence in vivo and high concentrations of &ohgr;-3 PUFA required to achieve putative “beneficial actions” in vitro (References 1-5).
Although the proinflammatory roles of LT and PG are appreciated, there is new evidence that other eicosanoids derived from arachidonate, namely lipoxins (LXs) and their endogenous analogues, the aspirin-triggered 15 epimer LXs (ATLs), are potent counterregulators of PMN-medicated injury and acute inflammation (7. Weissmann, G. 1991. Aspirin.
Sci. Am.
264:84-90; 8. Marcus, A. J. 1999. Platelets: their role in hemostasis, thrombosis, and inflammation. In Inflammation: Basic Principles and Clinical Correlates. J. I. Gallin and R. Snyderman, editors. Lippincott Williams & Wilkins, Philadelphia. 77-9; 9. Claria, J., and C. N. Serhan. 1995. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions.
Proc. Natl. Acad. Sci. USA
92:9475-9479; 10. Serhan, C. N., J. F. Maddox, N. A. Petasis, I. Akritopoulou-Zanze, A. Papayianni, H. R. Brady, S. P. Colgan, and J. L. Madara.1995. Design of lipoxin A
4
stable analogs that block transmigration and adhesion of human neutrophils.
Biochemistry
34:14609-14615; and 11. Chiang, N., K. Gronert, C. B. Clish, J. A. O'Brien, M. W. Freeman, and C. N. Serhan. 1999. Leukotriene B
4
receptor transgenic mice reveal novel protective roles for lipoxins and aspirin-triggered lipoxins in reperfusion.
J. Clin. Invest.
104:309-316.). At least two isoforms for COX, the classic site of action for nonsteroidal antiinflammatory drugs (NSAIDs), have been uncovered (COX-1 and 2) that appear to serve separate physiologic and pathophysiologic roles in humans (12. Herschman, H. R. 1998. Recent progress in the cellular and molecular biology of prostaglandin synthesis.
Trends Cardiovasc. Med.
8:145-150.). Each COX isoform carries dual enzymatic activities, a bisoxygenase and a peroxidase. Inhibition of COX-2 is the current focus of several pharmaceutical companies, as selective inhibition of COX-2 without blocking COX-1 could reduce unwanted side effects associated with traditional NSAIDs (13. Needleman, P., and P. C. Isakson. 1997. The discovery and function of COX-2.
J. Rheumatol.
24 (Suppl. 49):6-8.). In this regard, acetylation of COX-2 by the classic NSAID, aspirin (ASA), prevents the formation of prostanoids, but the acetylated enzyme remains active in situs to generate 15R-hydroxyeicosatetraenoic acid (15R-HETE) from C20:4 that is released and converted by activated inflammatory cells to the 15-epimeric LXs (14. Chiang, N., T. Takano, C. B. Clish, N. A. Petasis, H.-H. Tai, and C. N. Serhan. 1998. Aspirin-triggered 15-epi-lipoxin A
4
(ATL) generation by human leukocytes and murine peritonitis exudates: Development of a specific 15-epi-LXA
4
ELISA.
J. Pharmacol Exp. Ther.
287:779-790 and 15. Xiao, G., A.-L. Tsai, G. Palmer, W. C. Boyar, P. J. Marshall, and R. J. Kulmacz. 1997. Analysis of hydroperoxide-induced tyrosyl radicals and lipoxygenase activity in aspirin-treated human prostaglandin H synthase-2.
Biochemistry
36:1836-1845.). Synthetic analogues of these natural local mediators with prolonged biological half-life display potent antiinflammatory properties providing evidence that cell-cell interactions can be responsible for conversion of AA (and/or other lipids and PUFA see
FIG. 1
) to mediators that possess antiiflammatory properties by regulating signaling events important to host defense (Reference 11 and 16. Clish, C. B., J. A. O'Brien, K. Gronert, G. L. Stahl, N. A. Petasis, and C. N. Serhan. 1999. Local and systemic delivery of a stable aspirin-triggered lipoxin prevents neutrophil recruitment in vivo.
Proc. Nad. Acad. Sci. USA
96:8247-8252.).
SUMMARY OF THE INVENTION
Aspirin therapy inhibits prostaglandin biosynthesis without directly acting on lipoxygenases, yet via acetylation of cyclooxygenase 2 (COX-2) it leads to bioactive lipoxins (LXs) epimeric at carbon 15 (15-epi-LX, also termed aspirin-triggered LX [ATL]). The present invention provides that inflammatory exudates from mice treated with &ohgr;-3 polyunsaturated fatty acid and aspirin (ASA) generate a novel array of bioactive lipid signals. Human endothelial cells with upregulated COX-2 treated with ASA converted C20:5 w-3 to 18R-hydroxyeicosapentaenoic acid (HEPE) AND 15R-HEPE. Each was used by polymorphonuclear leukocytes to generate separate classes of novel trihydroxy-containing mediators, including 5-series 15R-LX and 5, 12, 18R-triHEPE. These new compounds prov
Clish Clary B.
Serhan Charles N.
Brigham and Women's Hospital
Dorsey & Whitney LLP
Reyes Hector M
Rothenberger Scott D.
Rotman Alan L.
LandOfFree
Aspirin-triggered lipid mediators does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Aspirin-triggered lipid mediators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aspirin-triggered lipid mediators will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3148905