Asphalt-additive composition

Compositions: coating or plastic – Coating or plastic compositions – Bituminous material or tarry residue

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106S246000, C106S269000, C106S312000

Reexamination Certificate

active

06261356

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an asphalt-additive composition with high temperature.
PRIOR ART AND PROBLEMS TO BE SOLVED BY THE INVENTION
When the pavement of a road is carried out by asphalt, aggregates and the asphalt are heated and blended. The adhesion between the asphalt, which is non-polar and hydrophobic, and aggregates, which are hydrophilic, is insufficient. Therefore, there is a drawback that the asphalt is stripped from the aggregates by action of water, such as water from rain or underground water.
A technical theme of improving the adhesion between asphalt and aggregates is a very important problem for improving asphalt pavement. Various methods have been proposed for solving the problem. For example, JP -A 60-188462 and U.S. Pat. No. 2,693,425 describe the use of a specific acidic organic phosphorus compound for asphalt with high temperature. According to these methods, the adhesion and the stripping effect are improved, but there remains a problem on quick effect thereof, which is demanded in the market. That is, in order to exhibit the adhesion and the anti-stripping effect effectively after the phosphorus compound is added to asphalt with high temperature, it is necessary to blend the asphalt and the phosphorus compound sufficiently and homogeneously. For this reason, much time is required for exhibiting the effects sufficiently.
An object of the present invention is to provide an asphalt-additive composition which has a high anti-stripping effect of asphalt from aggregates, and also exhibits the effect quickly.
MEANS FOR SOLVING THE PROBLEMS
The present invention provides an asphalt-additive composition comprising 100 parts by weight of (A) at least one phosphorus compound having the formula (1) and 25 to 400 parts by weight of (B) at least one member selected from the group consisting of mineral oils, alcohols having 8 to 18 carbon atoms, carboxylic acids having 8 to 18 carbon atoms and triglycerides of carboxylic acids having 8 to 18 carbon atoms:
[R
1
O—(PO)m(EO)n]xP(═O)—(OH)y  (1)
in which PO is oxypropylene unit, m is the mole number on the average of added oxypropylene units and ranges from 0 to 4, EO is oxyethylene unit, n is the mole number on the average of added oxyethylene units and ranges from 0 to 6, R
1
is a hydrocarbon group having 8 to 22 carbon atoms, x is a number of 1 to 2 and y is a number provided that the sum total of x and y may be 3.
Further, the present invention provides an asphalt composition comprising asphalt and 0.05 to 3.0 percent by weight, per the asphalt, of the additive composition.
The present invention provides a process for producing asphalt comprising mixing aggregates with asphalt in the presence of the additive composition.
The present invention provides use of the additive composition to mix well asphalt with aggregates.
EMBODIMENTS OF THE INVENTION
The (A) component of the asphalt-additive composition of the present invention needs to have a P-OH group. Further, the (A) component may be alone or a mixture of two or more components.
In the formula (1), R
1
is a hydrocarbon group having 8 to 22 carbon atoms, is preferably an alkyl, alkenyl or alkylphenyl group having 10 to 20 carbon atoms, and is more preferably an alkyl group having 10 to 18 carbon atoms. More preferably, R
1
has a branched group such as a methyl group. Specific examples of R
1
include 2-ethylhexyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, alkyl groups such as alkyl residues of alcohol obtained by oxosynthesis, alkyl groups originating from coconut oil alcohol, which is a mixture thereof, and alkyl phenyl groups such as octyl phenyl and nonylphenyl.
In the formula, m representing the average number of added molecules of oxypropylene is from 0 to 4, preferably from 0 to 3, and more preferably from 0 to 2. In the formula (1), n representing the average number of added molecules of oxyethylene is from 0 to 6, preferably from 0 to 5 and more preferably from 0 to 4. Especially preferably, both of m and n are zero. The order of added oxypropylene and oxyethylene may be optional. The form of the addition thereof may be block addition or random addition, optionally.
In the formula (1), x is from 1 to 2, preferably from 1 to 1.5 and especially preferably 1.0, and y is such a provided number that the sum total of x and y may be 3. That is, the compound of the formula (1) is a monoester or diester of phosphoric acid, or a mixture thereof. The blend ratio thereof may be optional. Even if any one of these compounds is used, anti-stripping effect can be obtained.
The (A) component of the present invention may contain an oligomer (for example, a dimer or a trimer) based on P-O-P bonds resulting from mutual condensation of phosphorus atoms in the compound (1).
The method for producing the compound (1) is not especially limited. However, it is common to comprise gaining a monohydric alcohol having 8 to 22 carbon atoms or a compound obtained by subjecting the compound to addition polymerization with propyleneoxide and/or ethyleneoxide, and converting them into a phosphoric ester. The conversion into the phosphoric ester may be performed in a known manner. The conversion may be performed, for example, by reacting the above-mentioned compound with phosphoric acid anhydride, phosphorus oxytrichloride or phosphorus trichloride.
The mineral oil of the (B) component is preferably kerosene, light oil, heavy oil, anthracene oil, creosote oil, or the like, and is especially preferably kerosene or light oil. The alcohol having 8 to 18 carbon atoms is preferably 2-ethylhexanol, tridecanol, octadecenol, or the like. The carboxylic acid having 8 to 18 carbon atoms is preferably oleic acid, linolenic acid, 2-ethylhexanoic acid, tall oil fatty acid, which is a mixture thereof, or the like. The triglyceride of the carboxylic acid is preferably soybean oil, tall oil, beef tallow, or the like, and especially preferably soybean oil or tall oil. The (B) component is preferably a component having a freezing point or a pour point of 20° C. or less, and is more preferably a component having a freezing point or a pour point of 0° C. or less. Especially preferred are mineral oil and triglyceride meeting this requirement. Specifically, kerosene, soybean oil and tall oil are preferred. The freezing point and the pour point are measured on the basis of JIS K 0065 and JIS K 2269, respectively.
The (B) component is believed to have the function which makes the (A) component improve its compatibility with asphalt appropriately and which makes the (A) component orientate more quickly and effectively at the interface between the asphalt and aggregates.
In the present invention, the (B) component is blended in an amount of 25-400, preferably 50-300 and more preferably 100-300 parts by weight per 100 parts by weight of the (A) component. In this range, the effect that the (B) component causes appropriate improvement in the compatibility of the (A) component with asphalt is exhibited, and improving the orientation of the (A) component at the interface between the asphalt and aggregates. Thus, anti-stripping effect and quick effect are sufficiently exhibited.
The form of the additive composition of the present invention may be any one of solid, liquid and paste forms. From the standpoint of the adhesion, quickness of the anti-stripping effect and workability, the viscosity at 25° C. is preferably 3000 mPa.S or less, more preferably 2000 mPa.S or less and especially preferably 500 mPa.S or less. The viscosity is measured on the basis of JIS Z 8803.
The additive composition of the present invention is used in an amount of 0.05-3.0% by weight, preferably 0.1-2.0% by weight and more preferably 0.15-1.5% by weight of asphalt with a temperature of 100-250° C. In this range, excellent effects are exhibited for the adhesion between asphalt and aggregates and anti-stripping effect of the asphalt from the aggregates.
An asphalt composition is prepared by adding 0.05-3.0% by weight of the asphal

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Asphalt-additive composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Asphalt-additive composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Asphalt-additive composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2454998

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.