Aryl sulfonamides and sulfamide derivatives and uses thereof

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Nitrogen containing other than solely as a nitrogen in an...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S603000, C514S604000, C564S084000, C564S085000, C564S086000, C564S087000

Reexamination Certificate

active

06211241

ABSTRACT:

Throughout this application, various references are referred to within parentheses. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains. Full bibliographic citation for these references may be found at the end of this application, preceding the sequence listing and the claims.
BACKGROUND OF THE INVENTION
The peptide neurotransmitter neuropeptide Y (NPY) is a 36 amino acid member of the pancreatic polypeptide family with widespread distribution throughout the mammalian nervous system (Dumont et al., 1992). The family includes the namesake pancreatic polypeptide (PP), synthesized primarily by endocrine cells in the pancreas; peptide YY (PYY), synthesized primarily by endocrine cells in the gut; and NPY, synthesized primarily in neurons (Michel, 1991; Dumont et al., 1992; Wahlestedt and Reis, 1993). All pancreatic polypeptide family members share a compact structure involving a “PP-fold” and a conserved C-terminal hexapeptide ending in Tyr
36
(or Y
36
in the single letter code). The striking conservation of Y
36
has prompted the reference to the pancreatic polypeptides' receptors as “Y-type” receptors (Wahlestedt et al., 1987), all of which are proposed to function as seven transmembrane-spanning G protein-coupled receptors (Dumont et al., 1992).
NPY and its relatives elicit a broad range of physiological effects through activation of at least five G protein-coupled receptor subtypes known as Y1, Y2, Y3, Y4 (or PP), and the “atypical Y1”. While the Y1, Y2, Y3, and Y4 (or PP) receptors were each described previously in both radioligand binding and functional assays, the “atypical Y1” receptor is unique in that its classification is based solely on feeding behavior induced by various peptides including NPY.
The role of NPY in normal and abnormal eating behavior, and the ability to interfere with NPY-dependent pathways as a means to appetite and weight control, are areas of great interest in pharmacological and pharmaceutical research (Sahu and Kalra, 1993; Dryden et al., 1994). NPY is considered to be the most powerful stimulant of feeding behavior yet described (Clark et al., 1984; Levine and Morley, 1984; Stanley and Leibowitz, 1984). The stimulation of feeding behavior by NPY is thought to occur primarily through activation of the hypothalamic “atypical Y1” receptor. For example, direct injection of NPY into the hypothalamus of satiated rats can increase food intake up to 10-fold over a 4-hour period (Stanley et al., 1992). Similar studies using other peptides has resulted in a pharmacologic profile for the “atypical Y1” receptor according to the rank order of potencies of peptides in stimulating feeding behavior as follows: NPY
2-36
≧NPY~PYY~[Leu
31
,Pro
34
]NPY>NPY
13-36
(Kalra et al., 1991; Stanley et al., 1992). The profile is similar to that of a Y1-like receptor except for the anomalous ability of NPY
2-36
to stimulate food intake with potency equivalent or better than that of NPY. A subsequent report in
J. Med. Chem.
by Balasubramaniam and co-workers (1994) showed that feeding can be regulated by [D-Trp
32
]NPY. While this peptide was presented as an NPY antagonist, the published data at least in part support a stimulatory effect of [D-Trp
32
]NPY on feeding. In contrast to other NPY receptor subtypes, the “feeding” receptor has never been characterized for peptide binding affinity in radioligand binding assays. The fact that a single receptor could be responsible for the feeding response has been impossible to validate in the absence of an isolated receptor protein; the possibility exists, for example, that the feeding response could be a composite profile of Y1 and Y2 subtypes.
This problem has been addressed by cloning rat and human cDNAs which encode a single receptor protein, referred to herein as Y5, whose pharmacologic profile links it to the “atypical Y1” receptor. The identification and characterization by applicants of a single molecular entity which explains the “atypical Y1” receptor allows the design of selective drugs which modulate feeding behavior. It is important to note, though, that any credible means of studying or modifying NPY-dependent feeding behavior must necessarily be highly selective, as NPY interacts with multiple receptor subtypes, as noted above (Dumont et al., 1992).
As used in this invention, the term “antagonist” refers to a compound which decreases the activity of a receptor. In the case of a G-protein coupled receptor, activation may be measured using any appropriate second messenger system which is coupled to the receptor in a cell or tissue in which the receptor is expressed. Some specific but by no means limiting examples of well-known second messenger systems are adenylate cyclase, intracellular calcium mobilization, ion channel activation, guanylate cyclase, and inositol phospholipid hydrolysis. Conversely, the term “agonist” refers to a compound which increases the activity of a receptor.
In order to test compounds for selective binding to the human Y5 receptor the cloned cDNAs encoding both the human and rat Y2 and Y4 (or PP) receptors have been used. The human and rat Y5 receptors were disclosed in PCT International Application No. PCT/US95/15646, published Jun. 6, 1996, and filed as a continuation in part of U.S. Ser. No. 08/349,025, filed Dec. 2, 1994, the contents of which are hereby incorporated by reference into this application. The human and rat Y2 receptors were disclosed in PCT International Application US95/01469, published Aug. 10, 1995, as WO 95/21245, and filed as a continuation-in-part of U.S. Ser. No. 08/192,288, filed Feb. 3, 1994, the contents of which are hereby incorporated by reference into this application. The human and rat Y4 receptors were disclosed in PCT International Application PCT/US94/14436, published Jul. 6, 1995, as WO 95/17906, and filed as a continuation-in-part of U.S. Ser. No. 08/176,412, filed Dec. 28, 1993, the contents of which are hereby incorporated by reference into this application. The Y1 receptor has been cloned from a variety of species including human, rat and mouse (Larhammar et al, 1992; Herzog et al, 1992; Eva et al, 1990; Eva et al, 1992).
The synthesis of novel aryl sulfonamide and sulfamide compounds are disclosed which bind selectively to the cloned human Y5 receptor compared to the other cloned human NPY receptors, and inhibit the activation of the cloned human Y5 receptor as measured in in vitro assays. The in vitro receptor binding and activation assays described hereinafter were performed using various cultured cell lines, each transfected with and expressing only a single Y-type receptor. In addition, the compounds of the present invention were shown to inhibit in animals either NPY-induced feeding behavior or feeding behavior exhibited by food-deprived animals.
This invention is also directed to the treatment of feeding disorders such as obesity and bulimia nervosa using the compounds described herein. In addition, the compounds of the present invention may also be used to treat abnormal conditions such as sexual/reproductive disorders, depression, epileptic seizure, hypertension, cerebral hemorrhage, congestive heart failure or sleep disturbances, or any condition in which antagonism of a Y5 receptor may be useful.
SUMMARY OF THE INVENTION
This invention is directed to novel aryl sulfonamide and sulfamide compounds which bind selectively to and inhibit the activity of the human Y5 receptor. This invention is also related to uses of these compounds for the treatment of feeding disorders such as obesity, anorexia nervosa, bulimia nervosa, and abnormal conditions such as sexual/reproductive disorders, depression, epileptic seizure, hypertension, cerebral hemorrhage, congestive heart failure or sleep disturbances and for the treatment of any disease in which antagonism of a Y5 receptor may be useful.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to compounds havin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Aryl sulfonamides and sulfamide derivatives and uses thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Aryl sulfonamides and sulfamide derivatives and uses thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aryl sulfonamides and sulfamide derivatives and uses thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2544111

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.